Math Problem Statement

2sinpi/6+(sqrt3)cospi/6

Solution

Let's simplify the given expression:

2sin(π6)+3cos(π6)2\sin\left(\frac{\pi}{6}\right) + \sqrt{3}\cos\left(\frac{\pi}{6}\right)

Step 1: Evaluate sin(π6)\sin\left(\frac{\pi}{6}\right) and cos(π6)\cos\left(\frac{\pi}{6}\right)

sin(π6)=12\sin\left(\frac{\pi}{6}\right) = \frac{1}{2} cos(π6)=32\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}

Step 2: Substitute these values into the expression

2×12+3×322 \times \frac{1}{2} + \sqrt{3} \times \frac{\sqrt{3}}{2}

Step 3: Simplify the expression

The first term:

2×12=12 \times \frac{1}{2} = 1

The second term:

3×32=32\sqrt{3} \times \frac{\sqrt{3}}{2} = \frac{3}{2}

Step 4: Combine the terms

1+321 + \frac{3}{2}

To combine these, convert 1 to 22\frac{2}{2}:

22+32=52\frac{2}{2} + \frac{3}{2} = \frac{5}{2}

Final Answer

The expression simplifies to 52\frac{5}{2}.


Do you want more details or have any questions?

Here are some related questions to explore:

  1. What are some other key angles and their sine and cosine values?
  2. How does this expression relate to the unit circle?
  3. What happens if you change the angle from π6\frac{\pi}{6} to another value?
  4. How can trigonometric identities simplify expressions like this one?
  5. What is the significance of π6\frac{\pi}{6} in trigonometry?

Tip: Knowing key trigonometric values can help you quickly simplify expressions like this.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry

Formulas

Sine function
Cosine function

Theorems

-

Suitable Grade Level

Grades 10-12