Math Problem Statement

Simplify: cos(x + π/6) + sin(x - π/3)

Solution

To simplify the given expression cos(x+π6)+sin(xπ3)\cos\left(x + \frac{\pi}{6}\right) + \sin\left(x - \frac{\pi}{3}\right), let us break it down step by step.

Step 1: Expand the trigonometric terms using angle addition and subtraction formulas.

  1. Cosine addition formula: cos(x+π6)=cosxcosπ6sinxsinπ6\cos\left(x + \frac{\pi}{6}\right) = \cos x \cos\frac{\pi}{6} - \sin x \sin\frac{\pi}{6}
  2. Sine subtraction formula: sin(xπ3)=sinxcosπ3cosxsinπ3\sin\left(x - \frac{\pi}{3}\right) = \sin x \cos\frac{\pi}{3} - \cos x \sin\frac{\pi}{3}

Step 2: Substitute the exact values of trigonometric functions for π6\frac{\pi}{6} and π3\frac{\pi}{3}:

  • cosπ6=32\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2},
  • sinπ6=12\sin\frac{\pi}{6} = \frac{1}{2},
  • cosπ3=12\cos\frac{\pi}{3} = \frac{1}{2},
  • sinπ3=32\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}.

Substitute these into the formulas: cos(x+π6)=cosx32sinx12\cos\left(x + \frac{\pi}{6}\right) = \cos x \cdot \frac{\sqrt{3}}{2} - \sin x \cdot \frac{1}{2} sin(xπ3)=sinx12cosx32\sin\left(x - \frac{\pi}{3}\right) = \sin x \cdot \frac{1}{2} - \cos x \cdot \frac{\sqrt{3}}{2}

Step 3: Combine the terms.

Add the two expressions:

\left(\cos x \cdot \frac{\sqrt{3}}{2} - \sin x \cdot \frac{1}{2}\right) + \left(\sin x \cdot \frac{1}{2} - \cos x \cdot \frac{\sqrt{3}}{2}\right)$$ Simplify the terms: - The $$\cos x \cdot \frac{\sqrt{3}}{2}$$ and $$-\cos x \cdot \frac{\sqrt{3}}{2}$$ cancel out. - The $$-\sin x \cdot \frac{1}{2}$$ and $$\sin x \cdot \frac{1}{2}$$ cancel out. Thus, the entire expression simplifies to: $$\boxed{0}$$ Let me know if you want further clarifications or have additional questions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angle Addition and Subtraction

Formulas

cos(A + B) = cos(A)cos(B) - sin(A)sin(B)
sin(A - B) = sin(A)cos(B) - cos(A)sin(B)

Theorems

Trigonometric Angle Addition and Subtraction Theorems

Suitable Grade Level

Grades 10-12