Math Problem Statement

2 log 1/125

Solution

To solve 2log(1125)2 \log \left( \frac{1}{125} \right), let's break it down step by step.

Step 1: Use the logarithmic property

One of the logarithmic properties says that:

alog(x)=log(xa)a \log(x) = \log(x^a)

So, applying this property:

2log(1125)=log((1125)2)2 \log \left( \frac{1}{125} \right) = \log \left( \left( \frac{1}{125} \right)^2 \right)

Step 2: Simplify the expression inside the logarithm

Next, simplify the expression inside the logarithm:

(1125)2=121252=115625\left( \frac{1}{125} \right)^2 = \frac{1^2}{125^2} = \frac{1}{15625}

So the expression becomes:

log(115625)\log \left( \frac{1}{15625} \right)

Step 3: Use the logarithmic property for division

The logarithmic property for division states that:

log(1x)=log(x)\log \left( \frac{1}{x} \right) = -\log(x)

Thus, applying this property:

log(115625)=log(15625)\log \left( \frac{1}{15625} \right) = -\log(15625)

Step 4: Calculate log(15625)\log(15625)

If the logarithm is base 10 (common logarithm), then:

log(15625)4.1938\log(15625) \approx 4.1938

Thus, the expression becomes:

log(15625)4.1938- \log(15625) \approx -4.1938

Final Answer:

2log(1125)4.19382 \log \left( \frac{1}{125} \right) \approx -4.1938

Would you like more details, or do you have any questions?


Here are five related questions:

  1. What is the value of log(110)\log \left( \frac{1}{10} \right)?
  2. Can you simplify log(11000)\log \left( \frac{1}{1000} \right)?
  3. What is the result of 3log(1100)3 \log \left( \frac{1}{100} \right)?
  4. How do you evaluate log(100000)\log(100000)?
  5. What is the logarithmic value of a negative power of 10?

Tip: Remember that logarithms of fractions can be transformed using the negative log rule log(1x)=log(x)\log \left( \frac{1}{x} \right) = -\log(x).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Properties of Logarithms
Exponents

Formulas

a log(x) = log(x^a)
log(1/x) = -log(x)

Theorems

Logarithmic properties

Suitable Grade Level

Grades 8-10