Math Problem Statement

Bentuk sederhana dari \(\frac{12}{2\sqrt{3} + 3}\) adalah ....

Solution

To simplify 1223+3\frac{12}{2\sqrt{3} + 3}, we need to rationalize the denominator by multiplying the numerator and the denominator by the conjugate of the denominator, which is 2332\sqrt{3} - 3.

1223+3×233233=12(233)(23+3)(233)\frac{12}{2\sqrt{3} + 3} \times \frac{2\sqrt{3} - 3}{2\sqrt{3} - 3} = \frac{12(2\sqrt{3} - 3)}{(2\sqrt{3} + 3)(2\sqrt{3} - 3)}

The denominator becomes: (23+3)(233)=(23)232=4×39=129=3(2\sqrt{3} + 3)(2\sqrt{3} - 3) = (2\sqrt{3})^2 - 3^2 = 4 \times 3 - 9 = 12 - 9 = 3

The numerator becomes: 12(233)=2433612(2\sqrt{3} - 3) = 24\sqrt{3} - 36

Thus, the fraction simplifies to: 243363=8312\frac{24\sqrt{3} - 36}{3} = 8\sqrt{3} - 12

Factoring out the greatest common factor of 4: 4(233)4(2\sqrt{3} - 3)

So, the simplified form is option d. 4(233)4(2\sqrt{3} - 3).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Rationalizing the Denominator
Algebraic Simplification

Formulas

\((a+b)(a-b) = a^2 - b^2\)

Theorems

Difference of Squares Theorem

Suitable Grade Level

Grades 9-12