Math Problem Statement

−ln(csch(x)+coth(x))=?

Solution

The expression ln(\csch(x)+coth(x))-\ln(\csch(x) + \coth(x)) can be simplified as follows:

First, recall the definitions of \csch(x)\csch(x) and coth(x)\coth(x):

  • \csch(x)=1sinh(x)\csch(x) = \frac{1}{\sinh(x)}
  • coth(x)=cosh(x)sinh(x)\coth(x) = \frac{\cosh(x)}{\sinh(x)}

Thus, \csch(x)+coth(x)=1sinh(x)+cosh(x)sinh(x)=1+cosh(x)sinh(x)\csch(x) + \coth(x) = \frac{1}{\sinh(x)} + \frac{\cosh(x)}{\sinh(x)} = \frac{1 + \cosh(x)}{\sinh(x)}

Now, substitute this into the logarithmic expression: ln(\csch(x)+coth(x))=ln(1+cosh(x)sinh(x))-\ln\left(\csch(x) + \coth(x)\right) = -\ln\left(\frac{1 + \cosh(x)}{\sinh(x)}\right)

We can split the logarithm: ln(1+cosh(x)sinh(x))=(ln(1+cosh(x))ln(sinh(x)))-\ln\left(\frac{1 + \cosh(x)}{\sinh(x)}\right) = -\left(\ln(1 + \cosh(x)) - \ln(\sinh(x))\right)

This simplifies to: ln(1+cosh(x))+ln(sinh(x))-\ln(1 + \cosh(x)) + \ln(\sinh(x))

Thus, the final simplified form of the expression is: ln(sinh(x))ln(1+cosh(x))\ln(\sinh(x)) - \ln(1 + \cosh(x))

Let me know if you'd like more details or have any questions!


Here are 5 questions to consider:

  1. What are the definitions of hyperbolic functions like sinh(x)\sinh(x) and cosh(x)\cosh(x)?
  2. How do the logarithmic properties apply to this problem?
  3. Can you express cosh(x)\cosh(x) and sinh(x)\sinh(x) in terms of exponentials?
  4. What would the expression look like for large values of xx?
  5. How can we interpret this result geometrically?

Tip: Remember, hyperbolic identities are similar to trigonometric identities but for hyperbolic functions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Hyperbolic Functions
Logarithms
Simplification

Formulas

csch(x) = 1/sinh(x)
coth(x) = cosh(x)/sinh(x)
Logarithmic property: ln(a/b) = ln(a) - ln(b)

Theorems

Hyperbolic Identity
Logarithmic Properties

Suitable Grade Level

Grades 11-12 (Advanced High School) or College