Math Problem Statement

1. 集合 A, B に対して、次を示せ。 (1) A - (A - B) = A ∩ B (2) (A ∩ B) - C = (A - C) ∩ (B - C) 2. 集合 A, B, C, D に対して、次を示せ。 (1) A△(A△B) = B (2) A△B = C△D ならば A△C = B△D 3. A = {2, 4, 6}, B = {2, 3, 4, 5, 6}, E = {2n | n ∈ N} とする。 (1) A は E の部分集合であることを示せ。 (2) B は E の部分集合でないことを示せ。 4. 集合 {a, b, c} の部分集合で、少なくとも要素を1つもつものをすべてあげよ。 5. {4n^2 + 6n + 2 | n ∈ Z} = {m^2 + m | m ∈ Z} を示せ。

Solution

Here is the content of the image:


演習

  1. 集合 A,BA, B に対して、次を示せ。
    (1) A(AB)=ABA - (A - B) = A \cap B
    (2) (AB)C=(AC)(BC)(A \cap B) - C = (A - C) \cap (B - C)

  2. 集合 A,B,C,DA, B, C, D に対して、次を示せ。
    (1) A(AB)=BA \triangle (A \triangle B) = B
    (2) AB=CDA \triangle B = C \triangle D ならば AC=BDA \triangle C = B \triangle D

  3. A={2,4,6},B={2,3,4,5,6},E={2nnN}A = \{2, 4, 6\}, B = \{2, 3, 4, 5, 6\}, E = \{2n \mid n \in \mathbb{N} \} とする。
    (1) AAEE の部分集合であることを示せ。
    (2) BBEE の部分集合でないことを示せ。

  4. 集合 {a,b,c}\{a, b, c\} の部分集合で、少なくとも要素を1つもつものをすべてあげよ。

  5. {4n2+6n+2nZ}={m2+mmZ}\{4n^2 + 6n + 2 \mid n \in \mathbb{Z}\} = \{m^2 + m \mid m \in \mathbb{Z}\} を示せ。


Would you like me to solve a specific question or provide explanations for these problems?

Related Questions:

  1. How do you prove set identities involving intersections and differences?
  2. What is the symmetric difference ABA \triangle B in set theory, and what are its properties?
  3. How do you determine whether a set is a subset of another?
  4. What are all subsets of a set with three elements?
  5. How do you prove that two sets are equal using set notation?

Tip: To prove equality of two sets X=YX = Y, show that XYX \subseteq Y and YXY \subseteq X.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Set Theory
Subset and Proper Subset
Symmetric Difference
Set Intersection and Difference
Algebraic Proofs

Formulas

A - B = A ∩ B'
Symmetric Difference: A△B = (A - B) ∪ (B - A)
Set Identity Proofs: Prove equality via ⊆ and ⊇

Theorems

Subset Definition: A ⊆ B ⇔ ∀x ∈ A → x ∈ B
Symmetric Difference Associativity
Equality of Sets: A = B ⇔ A ⊆ B ∧ B ⊆ A

Suitable Grade Level

University Level / Advanced High School