Math Problem Statement

Directions: Graph and label each figure and its image under the sequence of transformations. Give the coordinates of the image.

Solution

Let's go through this worksheet step-by-step. Here's how we'll solve it:


1. Rectangle DEFG:

  • Vertices: D(2,7),E(2,3),F(0,1),G(4,5)D(-2, 7), E(2, 3), F(0, 1), G(4, 5).

  • a. Translation Rule: (x,y)(x+6,y8)(x, y) \to (x + 6, y - 8). Apply the rule to each vertex:

    • D(2,7)(4,1)D(-2, 7) \to (4, -1).
    • E(2,3)(8,5)E(2, 3) \to (8, -5).
    • F(0,1)(6,7)F(0, 1) \to (6, -7).
    • G(4,5)(10,3)G(4, 5) \to (10, -3).
  • b. Reflection Across the yy-Axis: Reflect the translated points (x,y)(x,y)(x, y) \to (-x, y):

    • D(4,1)D(4,1)D'(4, -1) \to D''(-4, -1).
    • E(8,5)E(8,5)E'(8, -5) \to E''(-8, -5).
    • F(6,7)F(6,7)F'(6, -7) \to F''(-6, -7).
    • G(10,3)G(10,3)G'(10, -3) \to G''(-10, -3).

2. Triangle LMN:

  • Vertices: L(6,6),M(8,8),N(8,3)L(6, 6), M(8, 8), N(8, 3).

  • a. Reflection in the Line x=5x = 5: Reflect each point over x=5x = 5. For a point (x,y)(x, y), the reflected point is (2×5x,y)(2 \times 5 - x, y):

    • L(6,6)L(4,6)L(6, 6) \to L'(4, 6).
    • M(8,8)M(2,8)M(8, 8) \to M'(2, 8).
    • N(8,3)N(2,3)N(8, 3) \to N'(2, 3).
  • b. 270270^\circ Counterclockwise Rotation Around the Origin: For a 270270^\circ counterclockwise rotation, use the rule (x,y)(y,x)(x, y) \to (y, -x):

    • L(6,6)L(6,6)L(6, 6) \to L''(6, -6).
    • M(8,8)M(8,8)M(8, 8) \to M''(8, -8).
    • N(8,3)N(3,8)N(8, 3) \to N''(3, -8).

3. Quadrilateral ABCD:

  • Vertices: A(0,6),B(3,6),C(9,6),D(12,3)A(0, 6), B(-3, -6), C(-9, -6), D(-12, -3).

  • a. Dilation with a Scale Factor of 13\frac{1}{3}, Centered at the Origin: For a dilation, multiply each coordinate by 13\frac{1}{3}:

    • A(0,6)A(0,2)A(0, 6) \to A'(0, 2).
    • B(3,6)B(1,2)B(-3, -6) \to B'(-1, -2).
    • C(9,6)C(3,2)C(-9, -6) \to C'(-3, -2).
    • D(12,3)D(4,1)D(-12, -3) \to D'(-4, -1).
  • b. Translation Rule: (x,y)(x5,y1)(x, y) \to (x - 5, y - 1). Apply the rule to the dilated points:

    • A(0,2)A(5,1)A'(0, 2) \to A''(-5, 1).
    • B(1,2)B(6,3)B'(-1, -2) \to B''(-6, -3).
    • C(3,2)C(8,3)C'(-3, -2) \to C''(-8, -3).
    • D(4,1)D(9,2)D'(-4, -1) \to D''(-9, -2).

Let me know if you need further clarification or have additional questions!


5 Related Questions:

  1. What happens to a point when reflected across the yy-axis?
  2. How is dilation different from translation in transformations?
  3. What is the general rule for rotating a point 180180^\circ around the origin?
  4. Can you determine if two transformations commute? If not, why?
  5. How would translating and reflecting a figure impact its shape and size?

Tip:

Always label and plot points step-by-step to avoid confusion in transformations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Transformations
Translations
Reflections
Rotations
Dilations

Formulas

Translation: (x, y) → (x + a, y + b)
Reflection across y-axis: (x, y) → (-x, y)
Reflection across vertical line: (x, y) → (2k - x, y)
Rotation 270° counterclockwise: (x, y) → (y, -x)
Dilation from origin with scale factor k: (x, y) → (kx, ky)

Theorems

Reflection properties
Rotation properties
Dilation properties
Translation invariance in transformations

Suitable Grade Level

Grades 9-10