Math Problem Statement

what is the second derivative of \frac{-12y}{12x+2y} Calculate 𝑑𝑦𝑑π‘₯dydx and 𝑑2𝑦𝑑π‘₯2d2ydx2 for 12π‘₯𝑦+𝑦2=5. implicit

Solution

To find the second derivative d2ydx2\frac{d^2 y}{dx^2}, we need to perform implicit differentiation. Let’s break down the steps.

Step 1: Given equation

We are given the equation:

12xy+y2=5.12xy + y^2 = 5.

Step 2: First derivative using implicit differentiation

We differentiate both sides of the equation with respect to xx:

ddx(12xy+y2)=ddx(5).\frac{d}{dx}(12xy + y^2) = \frac{d}{dx}(5).

Differentiating term-by-term:

12β‹…(xdydx+yβ‹…1)+2ydydx=0.12 \cdot \left( x \frac{dy}{dx} + y \cdot 1 \right) + 2y \frac{dy}{dx} = 0.

Expanding this results in:

12y+12xdydx+2ydydx=0.12y + 12x \frac{dy}{dx} + 2y \frac{dy}{dx} = 0.

Now, we group all terms involving dydx\frac{dy}{dx}:

12xdydx+2ydydx=βˆ’12y.12x \frac{dy}{dx} + 2y \frac{dy}{dx} = -12y.

Factor out dydx\frac{dy}{dx}:

dydx(12x+2y)=βˆ’12y.\frac{dy}{dx} (12x + 2y) = -12y.

Thus, the first derivative dydx\frac{dy}{dx} is:

dydx=βˆ’12y12x+2y.\frac{dy}{dx} = \frac{-12y}{12x + 2y}.

Step 3: Second derivative d2ydx2\frac{d^2 y}{dx^2}

To find d2ydx2\frac{d^2 y}{dx^2}, we differentiate dydx\frac{dy}{dx} again with respect to xx:

ddx(βˆ’12y12x+2y).\frac{d}{dx} \left( \frac{-12y}{12x + 2y} \right).

We will apply the quotient rule:

d2ydx2=((12x+2y)β‹…ddx(βˆ’12y)βˆ’(βˆ’12y)β‹…ddx(12x+2y))(12x+2y)2.\frac{d^2 y}{dx^2} = \frac{ \left( (12x + 2y) \cdot \frac{d}{dx}(-12y) - (-12y) \cdot \frac{d}{dx}(12x + 2y) \right) }{ (12x + 2y)^2 }.

Now, calculate each derivative separately:

  1. ddx(βˆ’12y)=βˆ’12dydx\frac{d}{dx}(-12y) = -12 \frac{dy}{dx}.
  2. ddx(12x+2y)=12+2dydx\frac{d}{dx}(12x + 2y) = 12 + 2 \frac{dy}{dx}.

Plugging these into the quotient rule expression:

d2ydx2=(12x+2y)(βˆ’12dydx)βˆ’(βˆ’12y)(12+2dydx)(12x+2y)2.\frac{d^2 y}{dx^2} = \frac{ (12x + 2y) (-12 \frac{dy}{dx}) - (-12y)(12 + 2 \frac{dy}{dx}) }{ (12x + 2y)^2 }.

Expanding the numerator:

d2ydx2=βˆ’12(12x+2y)dydx+12β‹…12y+2(βˆ’12y)dydx(12x+2y)2.\frac{d^2 y}{dx^2} = \frac{ -12 (12x + 2y) \frac{dy}{dx} + 12 \cdot 12y + 2(-12y) \frac{dy}{dx} }{ (12x + 2y)^2 }.

Rearranging and simplifying:

d2ydx2=βˆ’12(12x+2yβˆ’2y)dydx+144y(12x+2y)2.\frac{d^2 y}{dx^2} = \frac{ -12 (12x + 2y - 2y) \frac{dy}{dx} + 144y }{ (12x + 2y)^2 }.

Final answer

d2ydx2=βˆ’12β‹…12xβ‹…dydx+144y(12x+2y)2.\frac{d^2 y}{dx^2} = \frac{ -12 \cdot 12x \cdot \frac{dy}{dx} + 144y }{ (12x + 2y)^2 }.

Do you want more details or have any questions?

Related Questions

  1. What are the critical points of the given equation using implicit differentiation?
  2. How does implicit differentiation help find higher-order derivatives?
  3. How does the presence of xx and yy in the same terms affect the derivative calculation?
  4. How would the results differ if the given equation involved trigonometric functions?
  5. What real-world situations might be modeled by an equation like 12xy+y2=512xy + y^2 = 5?

Tip

When differentiating implicitly, remember that each derivative involving yy should be multiplied by dydx\frac{dy}{dx}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Implicit Differentiation
Quotient Rule
Second Derivative

Formulas

\frac{dy}{dx} = \frac{-12y}{12x + 2y}
Quotient Rule: \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}

Theorems

Implicit Differentiation Theorem
Quotient Rule

Suitable Grade Level

Grades 11-12 (Advanced Calculus)