Math Problem Statement

Convert numbers to scientific notation and simplify given expressions using scientific notation.

Solution

Here’s the breakdown for the scientific notation problems and simplifications:


Write each number in scientific notation

  1. 3340
  • Move the decimal 3 places left: 3.34×1033.34 \times 10^3
  1. 128
  • Move the decimal 2 places left: 1.28×1021.28 \times 10^2
  1. 3,000,000
  • Move the decimal 6 places left: 3.0×1063.0 \times 10^6
  1. 583,000,000
  • Move the decimal 8 places left: 5.83×1085.83 \times 10^8
  1. 0.0000000405
  • Move the decimal 8 places right: 4.05×1084.05 \times 10^{-8}
  1. 0.398
  • Move the decimal 1 place right: 3.98×1013.98 \times 10^{-1}

Simplify and write each answer in scientific notation

  1. (6×101)(9.4×102)(6 \times 10^1)(9.4 \times 10^{-2})
  • Multiply coefficients: 6×9.4=56.46 \times 9.4 = 56.4
  • Combine powers of 10: 101×102=10110^1 \times 10^{-2} = 10^{-1}
  • Final: 5.64×1005.64 \times 10^0 or 5.645.64
  1. (7.6×106)(9×101)(7.6 \times 10^6)(9 \times 10^{-1})
  • Multiply coefficients: 7.6×9=68.47.6 \times 9 = 68.4
  • Combine powers of 10: 106×101=10510^6 \times 10^{-1} = 10^5
  • Adjust: 68.4=6.84×10168.4 = 6.84 \times 10^1
  • Final: 6.84×1066.84 \times 10^6
  1. (9.2×101)(5×106)(9.2 \times 10^{-1})(5 \times 10^6)
  • Multiply coefficients: 9.2×5=469.2 \times 5 = 46
  • Combine powers of 10: 101×106=10510^{-1} \times 10^6 = 10^5
  • Adjust: 46=4.6×10146 = 4.6 \times 10^1
  • Final: 4.6×1064.6 \times 10^6
  1. (6×101)(9.6×101)(6 \times 10^1)(9.6 \times 10^1)
  • Multiply coefficients: 6×9.6=57.66 \times 9.6 = 57.6
  • Combine powers of 10: 101×101=10210^1 \times 10^1 = 10^2
  • Adjust: 57.6=5.76×10157.6 = 5.76 \times 10^1
  • Final: 5.76×1035.76 \times 10^3
  1. (3×105)(5.3×106)(3 \times 10^5)(5.3 \times 10^{-6})
  • Multiply coefficients: 3×5.3=15.93 \times 5.3 = 15.9
  • Combine powers of 10: 105×106=10110^5 \times 10^{-6} = 10^{-1}
  • Adjust: 15.9=1.59×10115.9 = 1.59 \times 10^1
  • Final: 1.59×1001.59 \times 10^0 or 1.591.59
  1. (8×100)(5.4×103)(8 \times 10^0)(5.4 \times 10^{-3})
  • Multiply coefficients: 8×5.4=43.28 \times 5.4 = 43.2
  • Combine powers of 10: 100×103=10310^0 \times 10^{-3} = 10^{-3}
  • Adjust: 43.2=4.32×10143.2 = 4.32 \times 10^1
  • Final: 4.32×1024.32 \times 10^{-2}

Need more details?

Would you like step-by-step solutions for any specific problem? Let me know!


Related Questions:

  1. How do you convert large numbers into scientific notation?
  2. What are the rules for multiplying powers of 10?
  3. How do you simplify numbers that exceed 1010 after multiplication?
  4. How can you convert decimals into scientific notation?
  5. What’s the difference between positive and negative exponents in scientific notation?

Tip:

When multiplying numbers in scientific notation, first handle the coefficients (numbers) and then combine the powers of 10 by adding their exponents.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Scientific Notation
Exponents
Simplification of Powers

Formulas

a × 10^n (scientific notation)
Multiplication rule for exponents: 10^a × 10^b = 10^(a+b)

Theorems

Exponent Rules

Suitable Grade Level

Grade 8-10