Math Problem Statement

Solve the given problems by multiplying numbers in scientific notation.

Solution

Let’s break down each expression and find the answer for all the multiplication problems involving scientific notation:

  1. (2×103)(5×103)(2 \times 10^3)(5 \times 10^3)
    • Multiply the coefficients: 2×5=102 \times 5 = 10
    • Add the exponents: 103×103=103+3=10610^3 \times 10^3 = 10^{3+3} = 10^6
    • Answer: 10×106=1.0×10710 \times 10^6 = 1.0 \times 10^7

  1. (9×102)(8×106)(9 \times 10^2)(8 \times 10^6)
    • Multiply the coefficients: 9×8=729 \times 8 = 72
    • Add the exponents: 102×106=102+6=10810^2 \times 10^6 = 10^{2+6} = 10^8
    • Answer: 72×108=7.2×10972 \times 10^8 = 7.2 \times 10^9

  1. (1×105)(2×109)(1 \times 10^{-5})(2 \times 10^{-9})
    • Multiply the coefficients: 1×2=21 \times 2 = 2
    • Add the exponents: 105×109=105+(9)=101410^{-5} \times 10^{-9} = 10^{-5+(-9)} = 10^{-14}
    • Answer: 2×10142 \times 10^{-14}

  1. (4×107)(2×103)(4 \times 10^7)(2 \times 10^3)
    • Multiply the coefficients: 4×2=84 \times 2 = 8
    • Add the exponents: 107×103=107+3=101010^7 \times 10^3 = 10^{7+3} = 10^{10}
    • Answer: 8×10108 \times 10^{10}

  1. (9×103)(5×105)(9 \times 10^{-3})(5 \times 10^{-5})
    • Multiply the coefficients: 9×5=459 \times 5 = 45
    • Add the exponents: 103×105=10810^{-3} \times 10^{-5} = 10^{-8}
    • Answer: 45×108=4.5×10745 \times 10^{-8} = 4.5 \times 10^{-7}

  1. (7×108)(4×106)(7 \times 10^8)(4 \times 10^6)
    • Multiply the coefficients: 7×4=287 \times 4 = 28
    • Add the exponents: 108×106=108+6=101410^8 \times 10^6 = 10^{8+6} = 10^{14}
    • Answer: 28×1014=2.8×101528 \times 10^{14} = 2.8 \times 10^{15}

Summary of Answers:

  1. 1.0×1071.0 \times 10^7
  2. 7.2×1097.2 \times 10^9
  3. 2×10142 \times 10^{-14}
  4. 8×10108 \times 10^{10}
  5. 4.5×1074.5 \times 10^{-7}
  6. 2.8×10152.8 \times 10^{15}

Would you like a detailed explanation of any specific step? 😊 Here are some related questions to expand on this topic:

  1. What are the rules for multiplying numbers in scientific notation?
  2. How do you convert large or small numbers into scientific notation?
  3. What happens when the coefficient exceeds 10 in scientific notation?
  4. Can scientific notation be used in addition and subtraction?
  5. How is scientific notation applied in real-life scientific measurements?

Tip: When multiplying in scientific notation, always combine the coefficients first and then apply the exponent rules.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Scientific Notation
Multiplication Rules
Exponents

Formulas

a × 10^m × b × 10^n = (a × b) × 10^(m+n)

Theorems

Exponent Addition Rule

Suitable Grade Level

Grades 7-9