Math Problem Statement
Estimoitaessa normaalisti N(𝜇 ; 2,2) jakautuneen satunnaissuureen odotusarvoa 𝜇 , otetaan n kpl:n otos. Kuinka suuri otos on valittava, että 𝜇 :n 99 %:n luottamusvälin pituus ei ole suurempi kuin 1,5?
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Confidence Intervals
Normal Distribution
Sample Size Determination
Formulas
Confidence interval for the mean: \(\bar{X} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\)
Confidence interval length: \( 2 \times z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \)
Theorems
Central Limit Theorem
Properties of Normal Distribution
Suitable Grade Level
University Level - Statistics
Related Recommendation
Calculate Minimum Sample Size for Confidence Interval: 91.98% Confidence Level
Calculate Sample Size for Confidence Interval | Statistics Problem
95% Confidence Interval for Sample Size 2 with Population Standard Deviation of 22
Calculate Sample Size for Confidence Interval | Margin of Error 2 cm
Calculating Sample Size for Estimating Population Mean with 99.5% Confidence