Math Problem Statement

Calculate the indicated Riemann sum S4 for the function f(x) = 27 - 2x^2. Partition [0, 12] into four subintervals of equal length, and for each subinterval [xk-1, xk], let ck = (2xk-1 + xk)/3. Simplify your answer.

Solution

Let's solve this problem step by step.

Problem Setup:

The function is f(x)=272x2f(x) = 27 - 2x^2, and the interval is [0,12][0, 12]. We partition it into 4 subintervals of equal length. For each subinterval [xk1,xk][x_{k-1}, x_k], the midpoint ckc_k is given as: ck=2xk1+xk3.c_k = \frac{2x_{k-1} + x_k}{3}.

We calculate the Riemann sum S4S_4, which is the sum of the function values at ckc_k multiplied by the subinterval width.


Step 1: Determine the width of each subinterval

The interval [0,12][0, 12] is divided into 4 subintervals, so the width Δx\Delta x is: Δx=1204=3.\Delta x = \frac{12 - 0}{4} = 3.

The subintervals are: [ [0, 3], [3, 6], [6, 9], [9, 12]. ]


Step 2: Calculate ckc_k for each subinterval

Using the formula ck=2xk1+xk3c_k = \frac{2x_{k-1} + x_k}{3}, compute ckc_k for each subinterval:

  1. For [0,3][0, 3]: c1=2(0)+33=1c_1 = \frac{2(0) + 3}{3} = 1,
  2. For [3,6][3, 6]: c2=2(3)+63=4c_2 = \frac{2(3) + 6}{3} = 4,
  3. For [6,9][6, 9]: c3=2(6)+93=7c_3 = \frac{2(6) + 9}{3} = 7,
  4. For [9,12][9, 12]: c4=2(9)+123=10c_4 = \frac{2(9) + 12}{3} = 10.

Step 3: Evaluate f(ck)f(c_k) for each ckc_k

The function is f(x)=272x2f(x) = 27 - 2x^2. Compute f(ck)f(c_k) for each midpoint:

  1. f(c1)=272(1)2=272=25f(c_1) = 27 - 2(1)^2 = 27 - 2 = 25,
  2. f(c2)=272(4)2=2732=5f(c_2) = 27 - 2(4)^2 = 27 - 32 = -5,
  3. f(c3)=272(7)2=2798=71f(c_3) = 27 - 2(7)^2 = 27 - 98 = -71,
  4. f(c4)=272(10)2=27200=173f(c_4) = 27 - 2(10)^2 = 27 - 200 = -173.

Step 4: Calculate S4S_4

The Riemann sum S4S_4 is: S4=Δxk=14f(ck).S_4 = \Delta x \cdot \sum_{k=1}^4 f(c_k).

Substitute the values: S4=3(f(c1)+f(c2)+f(c3)+f(c4)).S_4 = 3 \cdot (f(c_1) + f(c_2) + f(c_3) + f(c_4)).

Substitute f(c1),f(c2),f(c3),f(c4)f(c_1), f(c_2), f(c_3), f(c_4): S4=3(25+(5)+(71)+(173)).S_4 = 3 \cdot (25 + (-5) + (-71) + (-173)).

Simplify: S4=3(224)=672.S_4 = 3 \cdot (-224) = -672.


Final Answer:

S4=672.S_4 = -672.

Would you like further explanation or a visualization of this calculation? Here are 5 related questions:

  1. How do Riemann sums relate to the integral of a function?
  2. Can we compute S4S_4 using left or right endpoints instead of midpoints?
  3. How does the choice of ckc_k affect the accuracy of the Riemann sum?
  4. What is the geometric interpretation of a negative Riemann sum?
  5. How can this calculation be extended to more subintervals or exact integration?

Tip: Always double-check the midpoints ckc_k and function evaluations to avoid errors in Riemann sum problems.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Riemann sums
Polynomial functions
Partitioning intervals
Summation

Formulas

Riemann sum: S = Δx * Σ f(ck)
Midpoint formula: ck = (2xk-1 + xk)/3
f(x) = 27 - 2x^2

Theorems

Riemann sum approximation of definite integrals

Suitable Grade Level

Grades 11-12