Math Problem Statement
リーマン曲率テンソルは、4次元時空の曲率を表わしていますか? それとも3次元の部分空間だけの曲率を表わしていますか?
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Differential Geometry
Riemann Curvature Tensor
General Relativity
Formulas
R^l_{ijk} = \partial_j \Gamma^l_{ik} - \partial_i \Gamma^l_{jk} + \Gamma^m_{ik} \Gamma^l_{jm} - \Gamma^m_{jk} \Gamma^l_{im} (Riemann curvature tensor definition)
Gauss's Equation: R_{ijkl} = K_{ijkl} + g_{ij} K_{kl} - g_{ik} K_{jl} (for submanifolds)
Theorems
Gauss's Theorem
General Relativity Field Equations
Suitable Grade Level
Undergraduate (Advanced Mathematics or Physics)
Related Recommendation
What is a Riemannian Manifold? An Introduction to Riemannian Geometry
Example of a Warped Metric: Large Sphere Inside a Small Sphere
Ricci Scalar Calculation for Metric with Exponential Factor
Understanding Orthogonal Curvilinear Coordinates and Solving Problems with Cube, Sphere, and Rectangular Parallelepiped
Understanding Curve Derivatives and Frenet-Serret Equations in High-dimensional Space