Math Problem Statement
ewrite sec(2x)sec(2x) using tan(x)tan(x):
sec(2x)=1cos(2x)=1+tan2(x)1−tan2(x)sec(2x)=cos(2x)1=1−tan2(x)1+tan2(x) explain this
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Trigonometric Identities
Double-Angle Formulas
Formulas
sec(2x) = 1 / cos(2x)
cos(2x) = (1 - tan^2(x)) / (1 + tan^2(x))
Theorems
Double-Angle Identity for Cosine
Suitable Grade Level
Grades 10-12
Related Recommendation
Prove the Trigonometric Identity (1 + tan^2(x)) / (1 - tan^2(x)) = sec(2x)
Simplify Trigonometric Expression ((2 + tan^2(x))/sec^2(x)) - 1 in Terms of Sine and Cosine
Simplifying sec(x) - tan(x)sin(x) Using Trigonometric Identities
Simplifying tan^2(x) - sec^2(x) Using Trigonometric Identities
Trigonometric Expression of sin(90° - x) and tan 2x in Terms of sec x