Math Problem Statement

Hausübungen 1. Rekursive Folgen Wir betrachten die rekursive Folge a_1 = 1, a_{n+1} = 1 + \frac{a_n^2}{4}. (a) Zeigen Sie durch vollständige Induktion, dass 1 \leq a_n \leq 2 für alle n \in \mathbb{N} gilt. (b) Zeigen Sie damit, dass die Folge (a_n)_{n \in \mathbb{N}} monoton wachsend ist. (c) Folgern Sie, dass (a_n)_{n \in \mathbb{N}} konvergiert und bestimmen Sie den Grenzwert. 2. Konvergenz von Folgen (a) Sei a > 0. Zeigen Sie mithilfe des Squeeze-Theorems, dass \lim_{n \to \infty} \sqrt{1 + \frac{a}{n}} = 1 gilt. (b) Sei a > 0. Bestimmen Sie den Grenzwert der Folge \left( \sqrt{n^2 + an - n} \right)_{n \in \mathbb{N}}. (c) Wir betrachten die Folge (a_n)_{n \in \mathbb{N}} mit a_n = \frac{1}{1+n} + \frac{1}{2+n} + \dots + \frac{1}{n+n}. Zeigen Sie, dass (a_n) monoton wachsend und beschränkt, also konvergiert ist.

Solution

This document contains homework exercises on sequences ("Folgen") in German. Let's break down the tasks to understand what each question requires:

Problem 1: Recursive Sequences ("Rekursive Folgen")

We are given the recursive sequence a1=1a_1 = 1 and an+1=1+an24a_{n+1} = 1 + \frac{a_n^2}{4}. The problem has three parts:

  1. (a) Show by mathematical induction that 1an21 \leq a_n \leq 2 for all nNn \in \mathbb{N}.

  2. (b) Show that the sequence (an)nN(a_n)_{n \in \mathbb{N}} is monotonically increasing.

  3. (c) Conclude that (an)nN(a_n)_{n \in \mathbb{N}} converges and determine its limit.

Problem 2: Convergence of Sequences ("Konvergenz von Folgen")

The second problem contains three different sequence convergence tasks:

  1. (a) Let a>0a > 0. Using the Squeeze Theorem ("Squeeze-Theorem"), show that limn1+an=1\lim_{n \to \infty} \sqrt{1 + \frac{a}{n}} = 1.

  2. (b) Let a>0a > 0. Determine the limit of the sequence (n2+ann)nN\left( \sqrt{n^2 + a n - n} \right)_{n \in \mathbb{N}}.

  3. (c) We consider the sequence (an)nN(a_n)_{n \in \mathbb{N}} defined by an=11+n+12+n++1n+na_n = \frac{1}{1+n} + \frac{1}{2+n} + \dots + \frac{1}{n+n}. Show that (an)(a_n) is monotonically decreasing and bounded, and therefore convergent. Determining the exact limit is not required, but giving a tip on finding it would be helpful.

Would you like a solution or detailed explanation for a specific part of this exercise set?

Related Questions

  1. How do we apply mathematical induction to prove inequalities in recursive sequences?
  2. What are the steps to show that a sequence is monotonic and bounded?
  3. How can we apply the Squeeze Theorem in limit proofs for sequences?
  4. What methods help in finding limits of sequences involving square roots?
  5. How do we establish convergence without finding an explicit limit?

Tip

For recursive sequences, proving that the sequence is bounded and monotonic often helps in establishing convergence.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Recursive Sequences
Convergence of Sequences
Mathematical Induction
Monotonic Sequences
Squeeze Theorem
Limits of Sequences
Bounded Sequences

Formulas

a_1 = 1, a_{n+1} = 1 + \frac{a_n^2}{4}
\lim_{n \to \infty} \sqrt{1 + \frac{a}{n}} = 1
a_n = \frac{1}{1+n} + \frac{1}{2+n} + \dots + \frac{1}{n+n}

Theorems

Squeeze Theorem

Suitable Grade Level

Undergraduate Mathematics