Math Problem Statement

how to do Rcos(theta-alpha) method

Solution

The Rcos(θα)R \cos(\theta - \alpha) method is commonly used in trigonometry to rewrite expressions of the form:

acosθ+bsinθa \cos\theta + b \sin\theta

into the single cosine form:

Rcos(θα)R \cos(\theta - \alpha)

where RR and α\alpha are constants determined using the following steps.


Step-by-Step Method

  1. Compare the Expansion
    Using the cosine angle subtraction identity:

    cos(θα)=cosθcosα+sinθsinα\cos(\theta - \alpha) = \cos\theta \cos\alpha + \sin\theta \sin\alpha

    If we multiply both sides by RR:

    Rcos(θα)=R(cosαcosθ+sinαsinθ)R \cos(\theta - \alpha) = R (\cos\alpha \cos\theta + \sin\alpha \sin\theta)

    Now, compare with acosθ+bsinθa\cos\theta + b\sin\theta, giving:

    a=Rcosα,b=Rsinαa = R \cos\alpha, \quad b = R \sin\alpha


  1. Find RR (Amplitude or Magnitude)
    Use Pythagoras' Theorem to determine RR:

    R=a2+b2R = \sqrt{a^2 + b^2}


  1. Find α\alpha (Phase Angle)
    Divide the equations:

    tanα=ba\tan\alpha = \frac{b}{a}

    Solve for α\alpha using:

    α=tan1(ba)\alpha = \tan^{-1} \left(\frac{b}{a}\right)

    Make sure to check the correct quadrant based on the signs of aa and bb.


  1. Final Expression
    Substitute RR and α\alpha back:

    acosθ+bsinθ=Rcos(θα)a\cos\theta + b\sin\theta = R\cos(\theta - \alpha)


Example

Express 3cosθ+4sinθ3\cos\theta + 4\sin\theta in the form Rcos(θα)R\cos(\theta - \alpha).

Step 1: Find RR

R=32+42=9+16=25=5R = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5

Step 2: Find α\alpha

tanα=43\tan\alpha = \frac{4}{3} α=tan1(43)\alpha = \tan^{-1} \left(\frac{4}{3}\right)

Approximating:

α53.13\alpha \approx 53.13^\circ

Step 3: Final Form

3cosθ+4sinθ=5cos(θ53.13)3\cos\theta + 4\sin\theta = 5\cos(\theta - 53.13^\circ)


Related Questions

  1. How do you convert Rcos(θα)R\cos(\theta - \alpha) back to acosθ+bsinθa\cos\theta + b\sin\theta?
  2. How do you apply the Rcos(θα)R \cos(\theta - \alpha) method to solve trigonometric equations?
  3. Can this method be used in physics (e.g., oscillations, AC circuits)?
  4. How does the Rcos(θα)R\cos(\theta - \alpha) form help in integration problems?
  5. What are the geometric interpretations of RR and α\alpha?

Tip:
Always double-check the quadrant when calculating α\alpha to ensure the correct angle is used!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Cosine Function
Angle Subtraction Identity

Formulas

a \cos\theta + b \sin\theta = R\cos(\theta - \alpha)
R = \sqrt{a^2 + b^2}
\tan\alpha = \frac{b}{a}
\alpha = \tan^{-1} \left(\frac{b}{a}\right)

Theorems

Cosine Angle Subtraction Identity
Pythagoras' Theorem

Suitable Grade Level

Grades 11-12