Math Problem Statement

By first expanding cos(x - 60°), show that the expression 2 cos(x - 60°) + cos x can be written in the form R cos(x - α), where R > 0 and 0° < α < 90°. Give the exact value of R and the value of α correct to 2 decimal places.

Solution

To solve this problem, we’ll follow these steps:

  1. Expand cos(x60)\cos(x - 60^\circ) using the cosine angle subtraction formula.
  2. Combine terms so that the expression is in the form Rcos(xα)R \cos(x - \alpha).
  3. Determine the values of RR and α\alpha.

Step-by-Step Solution

Step 1: Expand cos(x60)\cos(x - 60^\circ)

The cosine angle subtraction formula is: cos(x60)=cosxcos60+sinxsin60\cos(x - 60^\circ) = \cos x \cos 60^\circ + \sin x \sin 60^\circ Since cos60=12\cos 60^\circ = \frac{1}{2} and sin60=32\sin 60^\circ = \frac{\sqrt{3}}{2}, we get: cos(x60)=cosx12+sinx32\cos(x - 60^\circ) = \cos x \cdot \frac{1}{2} + \sin x \cdot \frac{\sqrt{3}}{2} =12cosx+32sinx= \frac{1}{2} \cos x + \frac{\sqrt{3}}{2} \sin x

Step 2: Substitute into the Expression

The given expression is: 2cos(x60)+cosx2 \cos(x - 60^\circ) + \cos x Substitute cos(x60)\cos(x - 60^\circ) from above: =2(12cosx+32sinx)+cosx= 2 \left( \frac{1}{2} \cos x + \frac{\sqrt{3}}{2} \sin x \right) + \cos x =cosx+3sinx+cosx= \cos x + \sqrt{3} \sin x + \cos x =2cosx+3sinx= 2 \cos x + \sqrt{3} \sin x

Step 3: Express in the Form Rcos(xα)R \cos(x - \alpha)

We want to write 2cosx+3sinx2 \cos x + \sqrt{3} \sin x in the form Rcos(xα)R \cos(x - \alpha), where: Rcos(xα)=R(cosxcosα+sinxsinα)R \cos(x - \alpha) = R (\cos x \cos \alpha + \sin x \sin \alpha) Comparing terms, we get: Rcosα=2andRsinα=3R \cos \alpha = 2 \quad \text{and} \quad R \sin \alpha = \sqrt{3}

Step 4: Solve for RR and α\alpha

To find RR, use the Pythagorean identity: R=(Rcosα)2+(Rsinα)2R = \sqrt{(R \cos \alpha)^2 + (R \sin \alpha)^2} =22+(3)2= \sqrt{2^2 + (\sqrt{3})^2} =4+3=7= \sqrt{4 + 3} = \sqrt{7}

Next, find α\alpha by taking the tangent: tanα=RsinαRcosα=32\tan \alpha = \frac{R \sin \alpha}{R \cos \alpha} = \frac{\sqrt{3}}{2} α=tan1(32)\alpha = \tan^{-1} \left( \frac{\sqrt{3}}{2} \right) Using a calculator, we find: α30.96\alpha \approx 30.96^\circ

Final Answer

The expression 2cos(x60)+cosx2 \cos(x - 60^\circ) + \cos x can be written as: 7cos(x30.96)\sqrt{7} \cos(x - 30.96^\circ) where: R=7andα30.96R = \sqrt{7} \quad \text{and} \quad \alpha \approx 30.96^\circ


Would you like further details on any part of the solution?

Related Questions

  1. How does the cosine angle subtraction formula work for other angles?
  2. Why is the form Rcos(xα)R \cos(x - \alpha) useful in trigonometric expressions?
  3. How do you convert other trigonometric expressions to the form Rcos(xα)R \cos(x - \alpha)?
  4. What if we had a different phase shift, like 4545^\circ or 9090^\circ? How would that affect the calculation?
  5. How can we use this technique in solving real-world problems involving oscillations or waveforms?

Tip

To rewrite expressions as Rcos(xα)R \cos(x - \alpha), always start by expanding and identifying coefficients of cosx\cos x and sinx\sin x for easier comparison.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angle Addition Formulas
Amplitude-Phase Form

Formulas

Cosine angle subtraction formula: cos(x - y) = cos x cos y + sin x sin y
Amplitude-Phase form: R cos(x - α) = R cos α cos x + R sin α sin x

Theorems

Pythagorean Identity

Suitable Grade Level

Grades 11-12