Math Problem Statement
Rationalize the denominator of $\frac{2}{\sqrt[3]{4}+\sqrt[3]{32}}$. The answer can be written in the form of $\frac{\sqrt[3]{A}}{B}$, where $A$ and $B$ are positive integers. Find the minimum possible value of $A+B$.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Algebra
Rationalization of Denominators
Cube Roots
Formulas
$\sqrt[3]{a}$ for cube roots
Rationalization by multiplying with cube root of the square of the denominator
Theorems
Properties of cube roots
Rationalization techniques for cube roots
Suitable Grade Level
Grades 9-12