Math Problem Statement
No as in on top it's 1+ the square root of 2
Solution
Thank you for the clarification! The expression you're referring to is:
Step 1: Rationalize the denominator
To rationalize the denominator, multiply both the numerator and the denominator by :
Step 2: Simplify the numerator
Distribute in the numerator:
Denominator
The denominator of the simplified expression is .
Would you like more details or have any questions?
Here are some related questions for further practice:
- How do you rationalize the denominator of a more complex fraction?
- How do you distribute a square root across terms in a binomial?
- What are the steps to simplify a fraction with a binomial in the numerator?
- Can you rationalize a denominator if it is a complex number?
- How does rationalizing affect the value of the original expression?
Tip: Always ensure each term in the numerator is multiplied by the factor used to rationalize the denominator.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Rationalization of Denominators
Square Roots
Formulas
-
Theorems
-
Suitable Grade Level
Grades 9-12