Math Problem Statement

Find the radius of curvature x = a cos^3 theta and y = a sin^3 theta at theta = pi/4

Solution

To find the radius of curvature for the parametric equations x=acos3θx = a \cos^3 \theta and y=asin3θy = a \sin^3 \theta at θ=π4\theta = \frac{\pi}{4}, we follow these steps:

1. Definitions and Formula

The radius of curvature RR for parametric curves is given by:

R=(x˙2+y˙2)3/2x˙y¨y˙x¨R = \frac{\left( \dot{x}^2 + \dot{y}^2 \right)^{3/2}}{\lvert \dot{x} \ddot{y} - \dot{y} \ddot{x} \rvert}

Where:

  • x˙=dxdθ\dot{x} = \frac{dx}{d\theta}, y˙=dydθ\dot{y} = \frac{dy}{d\theta}
  • x¨=d2xdθ2\ddot{x} = \frac{d^2x}{d\theta^2}, y¨=d2ydθ2\ddot{y} = \frac{d^2y}{d\theta^2}

2. Derivatives of xx and yy

Given x=acos3θx = a \cos^3 \theta and y=asin3θy = a \sin^3 \theta:

  • x˙=dxdθ=3acos2θ(sinθ)=3acos2θsinθ\dot{x} = \frac{dx}{d\theta} = 3a \cos^2 \theta (-\sin \theta) = -3a \cos^2 \theta \sin \theta
  • y˙=dydθ=3asin2θcosθ\dot{y} = \frac{dy}{d\theta} = 3a \sin^2 \theta \cos \theta

Now calculate the second derivatives:

  • x¨=ddθ(3acos2θsinθ)=3a(2cosθsin2θcos3θ)=3acosθ(2sin2θ+cos2θ)\ddot{x} = \frac{d}{d\theta} (-3a \cos^2 \theta \sin \theta) = -3a \left( -2\cos \theta \sin^2 \theta - \cos^3 \theta \right) = 3a \cos \theta (2\sin^2 \theta + \cos^2 \theta)
  • y¨=ddθ(3asin2θcosθ)=3a(2sinθcos2θsin3θ)\ddot{y} = \frac{d}{d\theta} (3a \sin^2 \theta \cos \theta) = 3a \left( 2\sin \theta \cos^2 \theta - \sin^3 \theta \right)

3. Simplifications at θ=π4\theta = \frac{\pi}{4}

At θ=π4\theta = \frac{\pi}{4}:

  • cosθ=sinθ=22\cos \theta = \sin \theta = \frac{\sqrt{2}}{2}
  • cos2θ=sin2θ=12\cos^2 \theta = \sin^2 \theta = \frac{1}{2}

Substitute these values:

  • x˙=3a(12)(22)=3a24\dot{x} = -3a \left( \frac{1}{2} \right)\left( \frac{\sqrt{2}}{2} \right) = -\frac{3a\sqrt{2}}{4}

  • y˙=3a(12)(22)=3a24\dot{y} = 3a \left( \frac{1}{2} \right)\left( \frac{\sqrt{2}}{2} \right) = \frac{3a\sqrt{2}}{4}

  • x¨=3a(22)(2(12)+12)=3a(22)(32)=9a24\ddot{x} = 3a \left( \frac{\sqrt{2}}{2} \right)\left( 2\left( \frac{1}{2} \right) + \frac{1}{2} \right) = 3a \left( \frac{\sqrt{2}}{2} \right)\left( \frac{3}{2} \right) = \frac{9a\sqrt{2}}{4}

  • y¨=3a(2(22)(12)(22)3)=3a(2228)=9a28\ddot{y} = 3a \left( 2\left( \frac{\sqrt{2}}{2} \right)\left( \frac{1}{2} \right) - \left( \frac{\sqrt{2}}{2} \right)^3 \right) = 3a \left( \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{8} \right) = \frac{9a\sqrt{2}}{8}

4. Radius of Curvature

Substitute into the formula for RR:

  • x˙2+y˙2=(3a24)2+(3a24)2=9a28+9a28=18a28=9a24\dot{x}^2 + \dot{y}^2 = \left( -\frac{3a\sqrt{2}}{4} \right)^2 + \left( \frac{3a\sqrt{2}}{4} \right)^2 = \frac{9a^2}{8} + \frac{9a^2}{8} = \frac{18a^2}{8} = \frac{9a^2}{4}
  • x˙y¨y˙x¨=(3a24)(9a28)(3a24)(9a24)=27a21627a216=54a216=27a28\dot{x} \ddot{y} - \dot{y} \ddot{x} = \left( -\frac{3a\sqrt{2}}{4} \right)\left( \frac{9a\sqrt{2}}{8} \right) - \left( \frac{3a\sqrt{2}}{4} \right)\left( \frac{9a\sqrt{2}}{4} \right) = -\frac{27a^2}{16} - \frac{27a^2}{16} = -\frac{54a^2}{16} = -\frac{27a^2}{8}

Now compute RR: R=(9a24)3/227a28=(9a24)9a2427a28=9a243a227a28=27a3827a28=aR = \frac{\left( \frac{9a^2}{4} \right)^{3/2}}{\left| -\frac{27a^2}{8} \right|} = \frac{\left( \frac{9a^2}{4} \right)\sqrt{\frac{9a^2}{4}}}{\frac{27a^2}{8}} = \frac{\frac{9a^2}{4} \cdot \frac{3a}{2}}{\frac{27a^2}{8}} = \frac{\frac{27a^3}{8}}{\frac{27a^2}{8}} = a

Final Answer:

The radius of curvature at θ=π4\theta = \frac{\pi}{4} is:

a\boxed{a}


Would you like further clarifications or steps explained in detail? 😊
Here are 5 related questions for you to explore:

  1. What is the geometric significance of the radius of curvature?
  2. How would the calculation differ for Cartesian (non-parametric) equations?
  3. Can we calculate the radius of curvature for polar coordinates?
  4. What happens to the radius of curvature at an inflection point?
  5. How is the radius of curvature related to the osculating circle?

Tip: Always double-check units and dimensions in curvature problems to ensure consistency!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Parametric Equations
Radius of Curvature
Differentiation
Second Derivatives

Formulas

R = ((dx/dθ)^2 + (dy/dθ)^2)^(3/2) / |(dx/dθ)(d^2y/dθ^2) - (dy/dθ)(d^2x/dθ^2)|

Theorems

Radius of Curvature for Parametric Curves

Suitable Grade Level

Grades 11-12