Solution
To find the radius of curvature for the parametric equations x=acos3θ and y=asin3θ at θ=4π, we follow these steps:
1. Definitions and Formula
The radius of curvature R for parametric curves is given by:
R=∣x˙y¨−y˙x¨∣(x˙2+y˙2)3/2
Where:
- x˙=dθdx, y˙=dθdy
- x¨=dθ2d2x, y¨=dθ2d2y
2. Derivatives of x and y
Given x=acos3θ and y=asin3θ:
- x˙=dθdx=3acos2θ(−sinθ)=−3acos2θsinθ
- y˙=dθdy=3asin2θcosθ
Now calculate the second derivatives:
- x¨=dθd(−3acos2θsinθ)=−3a(−2cosθsin2θ−cos3θ)=3acosθ(2sin2θ+cos2θ)
- y¨=dθd(3asin2θcosθ)=3a(2sinθcos2θ−sin3θ)
3. Simplifications at θ=4π
At θ=4π:
- cosθ=sinθ=22
- cos2θ=sin2θ=21
Substitute these values:
-
x˙=−3a(21)(22)=−43a2
-
y˙=3a(21)(22)=43a2
-
x¨=3a(22)(2(21)+21)=3a(22)(23)=49a2
-
y¨=3a(2(22)(21)−(22)3)=3a(22−82)=89a2
4. Radius of Curvature
Substitute into the formula for R:
- x˙2+y˙2=(−43a2)2+(43a2)2=89a2+89a2=818a2=49a2
- x˙y¨−y˙x¨=(−43a2)(89a2)−(43a2)(49a2)=−1627a2−1627a2=−1654a2=−827a2
Now compute R:
R=−827a2(49a2)3/2=827a2(49a2)49a2=827a249a2⋅23a=827a2827a3=a
Final Answer:
The radius of curvature at θ=4π is:
a
Would you like further clarifications or steps explained in detail? 😊
Here are 5 related questions for you to explore:
- What is the geometric significance of the radius of curvature?
- How would the calculation differ for Cartesian (non-parametric) equations?
- Can we calculate the radius of curvature for polar coordinates?
- What happens to the radius of curvature at an inflection point?
- How is the radius of curvature related to the osculating circle?
Tip: Always double-check units and dimensions in curvature problems to ensure consistency!