Math Problem Statement

Bestäm konvergensradien till serien \( \sum_{n=0}^\infty \frac{(n!)^2 x^{3n-1}}{(-4)^n (2n+3)!} \).

Solution

To determine the radius of convergence (RR) for the given series:

n=0(n!)2x3n1(4)n(2n+3)!,\sum_{n=0}^\infty \frac{(n!)^2 x^{3n-1}}{(-4)^n (2n+3)!},

we apply the ratio test for convergence.


Steps to Find the Radius of Convergence

  1. The general term of the series is: an=(n!)2x3n1(4)n(2n+3)!.a_n = \frac{(n!)^2 x^{3n-1}}{(-4)^n (2n+3)!}.

  2. Using the ratio test, consider: limnan+1an.\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.

    Substituting ana_n and an+1a_{n+1}: an+1an=((n+1)!)2x3(n+1)1(4)n+1(2(n+1)+3)!(n!)2x3n1(4)n(2n+3)!.\frac{a_{n+1}}{a_n} = \frac{\frac{((n+1)!)^2 x^{3(n+1)-1}}{(-4)^{n+1} (2(n+1)+3)!}}{\frac{(n!)^2 x^{3n-1}}{(-4)^n (2n+3)!}}.

  3. Simplify the ratio: an+1an=((n+1)!)2x3n+2(4)n(2n+3)!(n!)2x3n1(4)n+1(2(n+1)+3)!.\frac{a_{n+1}}{a_n} = \frac{((n+1)!)^2 x^{3n+2} \cdot (-4)^n \cdot (2n+3)!}{(n!)^2 x^{3n-1} \cdot (-4)^{n+1} \cdot (2(n+1)+3)!}.

    • Use (n+1)!=(n+1)n!(n+1)! = (n+1) \cdot n!,
    • Simplify factorials and powers of xx and (4)(-4).
  4. The key term simplifies to: an+1an=(n+1)2x34(2n+5)(2n+4).\left| \frac{a_{n+1}}{a_n} \right| = \frac{(n+1)^2 \cdot x^3}{4 \cdot (2n+5)(2n+4)}.

  5. As nn \to \infty: limnan+1an=x34.\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{|x|^3}{4}.

    For the series to converge, the ratio must satisfy: x34<1.\frac{|x|^3}{4} < 1.

  6. Solve for x|x|: x3<4    x<43.|x|^3 < 4 \quad \implies \quad |x| < \sqrt[3]{4}.


Radius of Convergence

The radius of convergence is: R=43.R = \sqrt[3]{4}.

Let me know if you want further clarifications or details!


5 Related Questions

  1. How does the ratio test determine the convergence of a power series?
  2. What is the significance of the radius of convergence in analyzing a series?
  3. How do factorials influence the convergence of a series?
  4. Could we use the root test instead of the ratio test for this series?
  5. How do we handle convergence at the boundary points (x=R|x| = R)?

Tip

When dealing with factorials and series, simplify as much as possible before applying limits—it reduces complexity and prevents errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Series convergence
Radius of convergence
Ratio test

Formulas

\( \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \)
Simplification of factorials \( (n+1)! = (n+1) \cdot n! \)

Theorems

Ratio test for series convergence

Suitable Grade Level

Undergraduate Mathematics