Math Problem Statement

4. Diberikan kalimat matematika berkuantor sebagai berikut: "∀x ∈ ℤ, ∃y ∈ ℤ, sehingga berlaku x + y = 0" (Z: himpunan bilangan Bulat) (a) Tuliskan kalimat matematika tersebut dalam Bahasa Indonesia. (b) Tentukan nilai kebenaran dari kalimat tersebut. 5. Buatlah Tabel Kebenaran dari argumen berikut; ¬(p ∨ q ∨ r) ⇔ (¬p ∧ ¬q ∧ ¬r)

Solution

Let's work through each of these problems.


Problem 4

Given Statement:
"∀x ∈ ℤ, ∃y ∈ ℤ, sehingga berlaku x + y = 0"
(Here, ℤ represents the set of all integers.)

Part (a): Translate the Mathematical Statement into Indonesian

The given statement translates as:

"Untuk setiap bilangan bulat xx, ada bilangan bulat yy sehingga x+y=0x + y = 0."

In simpler terms, this means for every integer xx, there exists an integer yy such that their sum is zero.

Part (b): Determine the Truth Value of the Statement

To determine if this statement is true, consider:

  1. For every integer xx, the integer yy can be chosen as y=xy = -x.
  2. With this choice, x+y=x+(x)=0x + y = x + (-x) = 0, which satisfies the condition x+y=0x + y = 0.

Thus, the statement is true because for any integer xx, we can always find an integer y=xy = -x that satisfies the given equation.


Problem 5

Statement:
Construct a truth table for the argument ¬(pqr)(¬p¬q¬r)\neg (p \lor q \lor r) \leftrightarrow (\neg p \land \neg q \land \neg r).

Truth Table Construction

We need to construct a truth table for the expression ¬(pqr)(¬p¬q¬r)\neg (p \lor q \lor r) \leftrightarrow (\neg p \land \neg q \land \neg r), which involves the following steps:

  1. Calculate pqrp \lor q \lor r.
  2. Calculate ¬(pqr)\neg (p \lor q \lor r).
  3. Calculate ¬p\neg p, ¬q\neg q, and ¬r\neg r.
  4. Calculate ¬p¬q¬r\neg p \land \neg q \land \neg r.
  5. Determine if ¬(pqr)\neg (p \lor q \lor r) is equivalent to ¬p¬q¬r\neg p \land \neg q \land \neg r for each row.

To complete this, construct a table with all possible truth values of pp, qq, and rr (8 rows in total since each variable has two possible values). Then, evaluate each component in each row to confirm the equivalence.


Would you like me to go into the details of constructing the full truth table?


Related Questions

  1. How can quantifiers affect the truth value of mathematical statements?
  2. What is the significance of using negations in logical statements?
  3. Can a similar logical equivalence be derived for more complex statements?
  4. How would the truth table change if we introduced additional variables?
  5. What is the general approach to determining the truth value of quantified statements?

Tip

Always double-check the meaning of each quantifier, as they can significantly alter the logical interpretation of a statement.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Quantifiers
Integer properties
Truth tables
Logical equivalence

Formulas

x + y = 0
¬(p ∨ q ∨ r) ⇔ (¬p ∧ ¬q ∧ ¬r)

Theorems

Existential and universal quantifiers in integer sets
Logical equivalence in truth tables

Suitable Grade Level

Undergraduate level or advanced high school