Math Problem Statement

Укажите все верные утверждения: 1. Однополостный гиперболоид является частным случаем цилиндрической поверхности. 2. При вращении гиперболы вокруг действительной оси получается двуполостный гиперболоид. 3. Цилиндрические поверхности являются частным случаем конической поверхности. 4. В сечениях эллиптического параболоида x^2/a^2 + y^2/b^2 = 2z плоскостями z = z_0 получается эллипс, минимый эллипс или точка, в сечениях плоскостями y = y_0 и x = x_0 получаются параболы.

Solution

The problem asks to identify which of the statements are correct. Let us analyze each statement carefully.


  1. Однополостный гиперболоид является частным случаем цилиндрической поверхности.

    • This is incorrect. A one-sheet hyperboloid is not a special case of a cylindrical surface because a hyperboloid is not generated by parallel lines (a key feature of cylindrical surfaces). It is instead a ruled surface but distinctly different from cylindrical surfaces.
  2. При вращении гиперболы вокруг действительной оси получается двуполостный гиперболоид.

    • This is correct. When a hyperbola rotates around its real (transverse) axis, it generates a two-sheet hyperboloid. This follows from the geometric definition of hyperboloids.
  3. Цилиндрические поверхности являются частным случаем конической поверхности.

    • This is correct. A cylindrical surface can be viewed as a degenerate case of a conical surface where the vertex is moved infinitely far away. This means the generatrix remains parallel.
  4. В сечениях эллиптического параболоида x2a2+y2b2=2z\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z плоскостями z=z0z = z_0 получается эллипс, минимый эллипс или точка, в сечениях плоскостями y=y0y = y_0 и x=x0x = x_0 получаются параболы.

    • This is correct. For an elliptic paraboloid, horizontal sections (z=z0z = z_0) yield ellipses (or degenerations like points for z0=0z_0 = 0), while vertical sections (x=x0x = x_0 or y=y0y = y_0) produce parabolas.

Correct Statements:

  • 2, 3, and 4 are correct.

Would you like further clarification or a deeper explanation? Here are some additional questions related to this problem:

  1. What are the main geometric differences between a hyperboloid and a cylindrical surface?
  2. Why does the rotation of a hyperbola around its axes lead to one-sheet or two-sheet hyperboloids?
  3. How does an elliptic paraboloid differ from a hyperbolic paraboloid in terms of sections?
  4. Can you explain the role of degenerate cases (like points or lines) in surface intersections?
  5. How is a cylindrical surface mathematically related to a cone?

Tip: Always visualize surfaces by plotting their cross-sections to better understand their properties!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Analytic Geometry
Quadratic Surfaces
Cylindrical Surfaces
Rotational Surfaces

Formulas

x^2/a^2 + y^2/b^2 = 2z (elliptic paraboloid equation)
x^2/a^2 - y^2/b^2 = 1 (hyperboloid equation)

Theorems

Properties of Quadratic Surfaces
Generation of Surfaces via Rotation
Relationship Between Cylindrical and Conical Surfaces

Suitable Grade Level

Undergraduate Mathematics or Advanced High School