Math Problem Statement

diketahui grafik yang memotong sumbu c pada titik (1,0) dan (4,0) serta memotong sumbu y pada titik (0,8). a.tentukan fungsi kuadratnya b.jika terdapat garis y=2x-2 yang memotong fungsi kuadrat,tentukan semua titik potongnya

Solution

Diketahui grafik kuadrat yang memotong sumbu xx di titik (1,0)(1,0) dan (4,0)(4,0), serta memotong sumbu yy di titik (0,8)(0,8). Mari kita mulai dengan langkah-langkah untuk menjawab bagian a dan b.

a. Menentukan Fungsi Kuadratnya

Karena grafik memotong sumbu xx di (1,0)(1,0) dan (4,0)(4,0), kita bisa menyatakan bahwa grafik kuadrat ini memiliki akar x=1x = 1 dan x=4x = 4. Dengan demikian, fungsi kuadratnya dapat dituliskan dalam bentuk:

y=a(x1)(x4)y = a(x - 1)(x - 4)

Selanjutnya, kita menggunakan informasi bahwa grafik memotong sumbu yy di titik (0,8)(0,8) untuk menentukan nilai aa. Ketika x=0x = 0, y=8y = 8. Substitusikan x=0x = 0 dan y=8y = 8 ke dalam persamaan:

8=a(01)(04)8 = a(0 - 1)(0 - 4)

8=a(1)(4)8 = a(1)(4)

8=4a8 = 4a

a=2a = 2

Jadi, fungsi kuadratnya adalah:

y=2(x1)(x4)y = 2(x - 1)(x - 4)

Atau jika disederhanakan:

y=2(x25x+4)y = 2(x^2 - 5x + 4)

y=2x210x+8y = 2x^2 - 10x + 8

b. Menentukan Titik Potong dengan Garis y=2x2y = 2x - 2

Untuk menentukan titik potong antara fungsi kuadrat y=2x210x+8y = 2x^2 - 10x + 8 dan garis y=2x2y = 2x - 2, kita perlu menyamakan kedua persamaan tersebut:

2x210x+8=2x22x^2 - 10x + 8 = 2x - 2

Pindahkan semua suku ke satu sisi persamaan:

2x210x+82x+2=02x^2 - 10x + 8 - 2x + 2 = 0

2x212x+10=02x^2 - 12x + 10 = 0

Bagi persamaan dengan 2 agar lebih sederhana:

x26x+5=0x^2 - 6x + 5 = 0

Sekarang, kita faktorkan persamaan kuadrat ini:

(x5)(x1)=0(x - 5)(x - 1) = 0

Jadi, x=5x = 5 atau x=1x = 1.

Untuk menemukan koordinat yy, substitusi nilai x=5x = 5 dan x=1x = 1 ke dalam persamaan garis y=2x2y = 2x - 2:

  • Untuk x=5x = 5: y=2(5)2=102=8y = 2(5) - 2 = 10 - 2 = 8 Titik potong: (5,8)(5,8).

  • Untuk x=1x = 1: y=2(1)2=22=0y = 2(1) - 2 = 2 - 2 = 0 Titik potong: (1,0)(1,0).

Kesimpulan:

  • Fungsi kuadratnya adalah y=2x210x+8y = 2x^2 - 10x + 8.
  • Titik potong antara fungsi kuadrat dan garis y=2x2y = 2x - 2 adalah (5,8)(5, 8) dan (1,0)(1, 0).

Jika Anda ingin penjelasan lebih lanjut atau ada pertanyaan, silakan tanya!

Berikut adalah 5 pertanyaan terkait:

  1. Bagaimana cara menentukan fungsi kuadrat jika diketahui tiga titik acak?
  2. Apa peran koefisien aa dalam fungsi kuadrat?
  3. Bagaimana cara memfaktorkan persamaan kuadrat secara umum?
  4. Apa makna titik potong antara grafik fungsi dan garis?
  5. Bagaimana menentukan titik maksimum atau minimum dari suatu fungsi kuadrat?

Tip: Dalam mencari akar kuadrat, jika tidak bisa difaktorkan, coba gunakan rumus kuadrat (x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Quadratic Equations
Intersection of Functions
Factoring

Formulas

y = a(x - r1)(x - r2)
Quadratic equation standard form: y = ax^2 + bx + c
Intersection points by equating two functions: f(x) = g(x)

Theorems

Factor Theorem
Zero Product Property

Suitable Grade Level

Grades 10-12