Math Problem Statement

Prove that (sinA+ cosecA)^2+(cosA+Sec2A)^2=7+tan^2A+Cot^2 A

Solution

To prove the given identity:

(sinA+cscA)2+(cosA+secA)2=7+tan2A+cot2A(\sin A + \csc A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A

Step 1: Expand the left-hand side (LHS)

We start by expanding each squared term on the left-hand side.

1. Expanding (sinA+cscA)2(\sin A + \csc A)^2:

(sinA+cscA)2=sin2A+2sinAcscA+csc2A(\sin A + \csc A)^2 = \sin^2 A + 2\sin A \cdot \csc A + \csc^2 A Since cscA=1sinA\csc A = \frac{1}{\sin A}, we have: sinAcscA=1\sin A \cdot \csc A = 1 Thus: (sinA+cscA)2=sin2A+2+csc2A(\sin A + \csc A)^2 = \sin^2 A + 2 + \csc^2 A Using csc2A=1sin2A\csc^2 A = \frac{1}{\sin^2 A}, we get: (sinA+cscA)2=sin2A+2+1sin2A(\sin A + \csc A)^2 = \sin^2 A + 2 + \frac{1}{\sin^2 A}

2. Expanding (cosA+secA)2(\cos A + \sec A)^2:

(cosA+secA)2=cos2A+2cosAsecA+sec2A(\cos A + \sec A)^2 = \cos^2 A + 2\cos A \cdot \sec A + \sec^2 A Since secA=1cosA\sec A = \frac{1}{\cos A}, we have: cosAsecA=1\cos A \cdot \sec A = 1 Thus: (cosA+secA)2=cos2A+2+sec2A(\cos A + \sec A)^2 = \cos^2 A + 2 + \sec^2 A Using sec2A=1cos2A\sec^2 A = \frac{1}{\cos^2 A}, we get: (cosA+secA)2=cos2A+2+1cos2A(\cos A + \sec A)^2 = \cos^2 A + 2 + \frac{1}{\cos^2 A}

Step 2: Add the expanded terms

Now, sum up both parts of the left-hand side:

(sinA+cscA)2+(cosA+secA)2=(sin2A+2+1sin2A)+(cos2A+2+1cos2A)(\sin A + \csc A)^2 + (\cos A + \sec A)^2 = \left( \sin^2 A + 2 + \frac{1}{\sin^2 A} \right) + \left( \cos^2 A + 2 + \frac{1}{\cos^2 A} \right)

Simplifying this expression: =sin2A+cos2A+4+1sin2A+1cos2A= \sin^2 A + \cos^2 A + 4 + \frac{1}{\sin^2 A} + \frac{1}{\cos^2 A} Since sin2A+cos2A=1\sin^2 A + \cos^2 A = 1, we have: 1+4+1sin2A+1cos2A=5+1sin2A+1cos2A1 + 4 + \frac{1}{\sin^2 A} + \frac{1}{\cos^2 A} = 5 + \frac{1}{\sin^2 A} + \frac{1}{\cos^2 A}

Step 3: Express 1sin2A+1cos2A\frac{1}{\sin^2 A} + \frac{1}{\cos^2 A} in terms of tanA\tan A and cotA\cot A

We know that: 1sin2A=csc2A=1+cot2A\frac{1}{\sin^2 A} = \csc^2 A = 1 + \cot^2 A and 1cos2A=sec2A=1+tan2A\frac{1}{\cos^2 A} = \sec^2 A = 1 + \tan^2 A Thus: 1sin2A+1cos2A=(1+cot2A)+(1+tan2A)=2+cot2A+tan2A\frac{1}{\sin^2 A} + \frac{1}{\cos^2 A} = (1 + \cot^2 A) + (1 + \tan^2 A) = 2 + \cot^2 A + \tan^2 A

Step 4: Final simplification

Substituting this into our previous expression: 5+1sin2A+1cos2A=5+2+cot2A+tan2A5 + \frac{1}{\sin^2 A} + \frac{1}{\cos^2 A} = 5 + 2 + \cot^2 A + \tan^2 A =7+cot2A+tan2A= 7 + \cot^2 A + \tan^2 A

Thus, the left-hand side simplifies to:

(sinA+cscA)2+(cosA+secA)2=7+tan2A+cot2A(\sin A + \csc A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A

Conclusion:

We have shown that: (sinA+cscA)2+(cosA+secA)2=7+tan2A+cot2A(\sin A + \csc A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A The identity is proven to be true.


Would you like a more detailed explanation of any specific step or have any other questions?

Here are some related questions you might find useful:

  1. Can you prove the Pythagorean identity sin2A+cos2A=1\sin^2 A + \cos^2 A = 1?
  2. How is tanA\tan A related to sinA\sin A and cosA\cos A?
  3. What are the properties of secA\sec A and cscA\csc A in trigonometry?
  4. Can you derive the double angle identities for sine and cosine?
  5. How does the identity tan2A+1=sec2A\tan^2 A + 1 = \sec^2 A relate to this proof?

Tip: When working with trigonometric identities, remember that many can be transformed into simpler forms using basic Pythagorean identities or reciprocal relationships between the trigonometric functions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities
Algebraic Expansion

Formulas

(sin A + csc A)^2 = sin^2 A + 2 + csc^2 A
(cos A + sec A)^2 = cos^2 A + 2 + sec^2 A
Pythagorean Identity: sin^2 A + cos^2 A = 1
Reciprocal Identities: csc A = 1/sin A, sec A = 1/cos A
tan^2 A + 1 = sec^2 A, cot^2 A + 1 = csc^2 A

Theorems

Pythagorean Identity
Reciprocal Trigonometric Relationships

Suitable Grade Level

Grades 11-12