Math Problem Statement
Prove that (sinA+ cosecA)^2+(cosA+Sec2A)^2=7+tan^2A+Cot^2 A
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Trigonometry
Trigonometric Identities
Algebraic Expansion
Formulas
(sin A + csc A)^2 = sin^2 A + 2 + csc^2 A
(cos A + sec A)^2 = cos^2 A + 2 + sec^2 A
Pythagorean Identity: sin^2 A + cos^2 A = 1
Reciprocal Identities: csc A = 1/sin A, sec A = 1/cos A
tan^2 A + 1 = sec^2 A, cot^2 A + 1 = csc^2 A
Theorems
Pythagorean Identity
Reciprocal Trigonometric Relationships
Suitable Grade Level
Grades 11-12
Related Recommendation
Prove Trigonometric Identity: tanA/(1-cotA) + cotA/(1-tanA) = secA*cosecA + 1
Simplifying Trigonometric Equation Involving sec, csc, tan, and cot Functions
Prove the Trigonometric Identity: (SinA + sin 2A) / (1 + cosA + cos 2A) = tanA
Trigonometric Identity: Proving (1 - sin^2 A)(1 + cot^2 A) = cot^2 A
Prove Trigonometric Identity: (sec A + tan A) / (csc A + cot A) = (csc A - cot A) / (sec A - tan A)