Math Problem Statement

can you give prove for (sec^2(A)+tan^2(A))(csc^2(A)+cot^2(A)) = 1+2sec^2(A)csc^2(A)

Solution

To prove the given identity:

(sec2(A)+tan2(A))(csc2(A)+cot2(A))=1+2sec2(A)csc2(A)\left( \sec^2(A) + \tan^2(A) \right)\left( \csc^2(A) + \cot^2(A) \right) = 1 + 2\sec^2(A)\csc^2(A)

Step-by-Step Proof:

1. Expand each part of the left-hand side:

We know from trigonometric identities: sec2(A)=1+tan2(A)andcsc2(A)=1+cot2(A).\sec^2(A) = 1 + \tan^2(A) \quad \text{and} \quad \csc^2(A) = 1 + \cot^2(A).

Using these, we can rewrite: sec2(A)+tan2(A)=(1+tan2(A))+tan2(A)=1+2tan2(A),\sec^2(A) + \tan^2(A) = (1 + \tan^2(A)) + \tan^2(A) = 1 + 2\tan^2(A), and csc2(A)+cot2(A)=(1+cot2(A))+cot2(A)=1+2cot2(A).\csc^2(A) + \cot^2(A) = (1 + \cot^2(A)) + \cot^2(A) = 1 + 2\cot^2(A).

So the product becomes: (sec2(A)+tan2(A))(csc2(A)+cot2(A))=(1+2tan2(A))(1+2cot2(A)).\left( \sec^2(A) + \tan^2(A) \right)\left( \csc^2(A) + \cot^2(A) \right) = \left( 1 + 2\tan^2(A) \right)\left( 1 + 2\cot^2(A) \right).

2. Expand the product:

Using the distributive property, expand: (1+2tan2(A))(1+2cot2(A))=1+2cot2(A)+2tan2(A)+4tan2(A)cot2(A).\left( 1 + 2\tan^2(A) \right)\left( 1 + 2\cot^2(A) \right) = 1 + 2\cot^2(A) + 2\tan^2(A) + 4\tan^2(A)\cot^2(A).

3. Simplify terms:

Recall that: tan2(A)cot2(A)=(sin2(A)cos2(A))(cos2(A)sin2(A))=1.\tan^2(A)\cot^2(A) = \left(\frac{\sin^2(A)}{\cos^2(A)}\right)\left(\frac{\cos^2(A)}{\sin^2(A)}\right) = 1.

Substitute this into the expression: 1+2cot2(A)+2tan2(A)+4.1 + 2\cot^2(A) + 2\tan^2(A) + 4.

4. Substitute cot2(A)\cot^2(A) and tan2(A)\tan^2(A) in terms of sec2(A)\sec^2(A) and csc2(A)\csc^2(A):

We know: cot2(A)=csc2(A)1andtan2(A)=sec2(A)1.\cot^2(A) = \csc^2(A) - 1 \quad \text{and} \quad \tan^2(A) = \sec^2(A) - 1.

Substitute: 1+2cot2(A)+2tan2(A)+4tan2(A)cot2(A)=1+2(csc2(A)1)+2(sec2(A)1)+4.1 + 2\cot^2(A) + 2\tan^2(A) + 4\tan^2(A)\cot^2(A) = 1 + 2\left(\csc^2(A) - 1\right) + 2\left(\sec^2(A) - 1\right) + 4.

Simplify: 1+2csc2(A)2+2sec2(A)2+4sec2(A)csc2(A).1 + 2\csc^2(A) - 2 + 2\sec^2(A) - 2 + 4\sec^2(A)\csc^2(A).

Combine like terms: 122+4+2sec2(A)+2csc2(A)+4sec2(A)csc2(A).1 - 2 - 2 + 4 + 2\sec^2(A) + 2\csc^2(A) + 4\sec^2(A)\csc^2(A).

=1+2sec2(A)+2csc2(A)+4sec2(A)csc2(A).= 1 + 2\sec^2(A) + 2\csc^2(A) + 4\sec^2(A)\csc^2(A).

5. Simplify further:

Group terms: 1+2sec2(A)csc2(A)+4sec2(A)csc2(A).1 + 2\sec^2(A)\csc^2(A) + 4\sec^2(A)\csc^2(A).

Combine terms: =1+2sec2(A)csc2(A).= 1 + 2\sec^2(A)\csc^2(A).

Thus, the left-hand side equals the right-hand side.

Q.E.D.\boxed{\text{Q.E.D.}}


Do you want further details or have any questions?

Related Questions:

  1. What are the key trigonometric identities used in such proofs?
  2. How do you simplify tan2(A)cot2(A)\tan^2(A)\cot^2(A)?
  3. What is the difference between proving an identity versus solving an equation?
  4. How do secant and cosecant functions relate to each other?
  5. Can this proof be simplified further using substitutions?

Tip:

When proving trigonometric identities, always start by expressing all terms in terms of sin(A)\sin(A) and cos(A)\cos(A) for better clarity.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities
Simplification of Expressions

Formulas

sec^2(A) = 1 + tan^2(A)
csc^2(A) = 1 + cot^2(A)
tan^2(A)cot^2(A) = 1

Theorems

Pythagorean Trigonometric Identities

Suitable Grade Level

Grades 10-12