Math Problem Statement

Prove cosecx/cotx+tanx=cosx

Solution

We are asked to prove the trigonometric identity:

cscxcotx+tanx=cosx\frac{\csc x}{\cot x + \tan x} = \cos x

Step-by-step proof:

  1. Express in terms of basic trigonometric functions:

    Recall the definitions of cosecant, cotangent, and tangent in terms of sine and cosine: cscx=1sinx,cotx=cosxsinx,tanx=sinxcosx\csc x = \frac{1}{\sin x}, \quad \cot x = \frac{\cos x}{\sin x}, \quad \tan x = \frac{\sin x}{\cos x}

    Substitute these into the left-hand side (LHS): cscxcotx+tanx=1sinxcosxsinx+sinxcosx\frac{\csc x}{\cot x + \tan x} = \frac{\frac{1}{\sin x}}{\frac{\cos x}{\sin x} + \frac{\sin x}{\cos x}}

  2. Simplify the denominator:

    To simplify cosxsinx+sinxcosx\frac{\cos x}{\sin x} + \frac{\sin x}{\cos x}, get a common denominator: cosxsinx+sinxcosx=cos2x+sin2xsinxcosx\frac{\cos x}{\sin x} + \frac{\sin x}{\cos x} = \frac{\cos^2 x + \sin^2 x}{\sin x \cos x}

    Use the Pythagorean identity cos2x+sin2x=1\cos^2 x + \sin^2 x = 1: 1sinxcosx\frac{1}{\sin x \cos x}

  3. Rewrite the expression:

    Now, substitute this simplified denominator back into the expression: 1sinx1sinxcosx=1sinxsinxcosx1=cosx\frac{\frac{1}{\sin x}}{\frac{1}{\sin x \cos x}} = \frac{1}{\sin x} \cdot \frac{\sin x \cos x}{1} = \cos x

Thus, the left-hand side simplifies to cosx\cos x, which is exactly the right-hand side (RHS).

Conclusion:

cscxcotx+tanx=cosx\boxed{\frac{\csc x}{\cot x + \tan x} = \cos x}

This proves the given identity.


Would you like more details on any step, or have any other questions?

Here are 5 related questions to expand on this:

  1. How do we derive the Pythagorean identity cos2x+sin2x=1\cos^2 x + \sin^2 x = 1?
  2. What is the relationship between sine, cosine, and the unit circle?
  3. How can we prove cscx=1sinx\csc x = \frac{1}{\sin x} using the unit circle?
  4. How can we solve trigonometric equations involving both sine and cosine functions?
  5. What are the conditions under which trigonometric identities hold?

Tip: When dealing with trigonometric identities, expressing all functions in terms of sine and cosine often simplifies the problem.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities

Formulas

\csc x = \frac{1}{\sin x}
\cot x = \frac{\cos x}{\sin x}
\tan x = \frac{\sin x}{\cos x}
Pythagorean Identity: \cos^2 x + \sin^2 x = 1

Theorems

Pythagorean Identity

Suitable Grade Level

Grades 10-12