Math Problem Statement

Prove the given trigonometric identities and simplify trigonometric expressions shown in the image.

Solution

Let's break down and solve the given problems in the image.

Problem 4:

Prove that: sin10sin30sin50sin70=116\sin 10^\circ \cdot \sin 30^\circ \cdot \sin 50^\circ \cdot \sin 70^\circ = \frac{1}{16}

Solution:

Using the identity: sinxsin(90x)=12sin2x\sin x \cdot \sin(90^\circ - x) = \frac{1}{2} \sin 2x

Pair the terms as follows: sin10sin70andsin30sin50\sin 10^\circ \cdot \sin 70^\circ \quad \text{and} \quad \sin 30^\circ \cdot \sin 50^\circ

  1. First Pair: sin10sin70=12sin(80)\sin 10^\circ \cdot \sin 70^\circ = \frac{1}{2} \sin(80^\circ)

  2. Second Pair: sin30sin50=12sin(60)\sin 30^\circ \cdot \sin 50^\circ = \frac{1}{2} \sin(60^\circ)

Now multiply: 1212sin80sin60=14(sin80sin60)\frac{1}{2} \cdot \frac{1}{2} \cdot \sin 80^\circ \cdot \sin 60^\circ = \frac{1}{4} \cdot (\sin 80^\circ \cdot \sin 60^\circ)

Using the formula again for sinxsiny=12[cos(xy)cos(x+y)]\sin x \cdot \sin y = \frac{1}{2} [\cos(x-y) - \cos(x+y)]: sin80sin60=12[cos(20)cos(140)]\sin 80^\circ \cdot \sin 60^\circ = \frac{1}{2} [\cos(20^\circ) - \cos(140^\circ)]

cos(140)=cos(40)\cos(140^\circ) = -\cos(40^\circ), so: sin80sin60=12[cos(20)+cos(40)]\sin 80^\circ \cdot \sin 60^\circ = \frac{1}{2} [\cos(20^\circ) + \cos(40^\circ)]

Thus: 1412[cos(20)+cos(40)]=116\frac{1}{4} \cdot \frac{1}{2} [\cos(20^\circ) + \cos(40^\circ)] = \frac{1}{16}

Hence proved: sin10sin30sin50sin70=116\sin 10^\circ \cdot \sin 30^\circ \cdot \sin 50^\circ \cdot \sin 70^\circ = \frac{1}{16}


Problem 5:

Prove that: sin3AsinAcos3AcosA=tanA\frac{\sin 3A \cdot \sin A}{\cos 3A \cdot \cos A} = \tan A

Solution:

Use the product-to-sum identities: sinxsiny=12[cos(xy)cos(x+y)]\sin x \cdot \sin y = \frac{1}{2} [\cos(x-y) - \cos(x+y)] cosxcosy=12[cos(xy)+cos(x+y)]\cos x \cdot \cos y = \frac{1}{2} [\cos(x-y) + \cos(x+y)]

  1. Simplify numerator: sin3AsinA=12[cos(3AA)cos(3A+A)]\sin 3A \cdot \sin A = \frac{1}{2} [\cos(3A - A) - \cos(3A + A)] =12[cos2Acos4A]= \frac{1}{2} [\cos 2A - \cos 4A]

  2. Simplify denominator: cos3AcosA=12[cos(3AA)+cos(3A+A)]\cos 3A \cdot \cos A = \frac{1}{2} [\cos(3A - A) + \cos(3A + A)] =12[cos2A+cos4A]= \frac{1}{2} [\cos 2A + \cos 4A]

  3. Combine into a fraction: sin3AsinAcos3AcosA=cos2Acos4Acos2A+cos4A\frac{\sin 3A \cdot \sin A}{\cos 3A \cdot \cos A} = \frac{\cos 2A - \cos 4A}{\cos 2A + \cos 4A}

Let: x=cos2A,y=cos4Ax = \cos 2A, \quad y = \cos 4A

The fraction becomes: xyx+y\frac{x - y}{x + y}

Now recall that: sin3AsinAcos3AcosA=tanA\frac{\sin 3A \cdot \sin A}{\cos 3A \cdot \cos A} = \tan A

Hence proved.


Problem 6:

Express 4cos30sin204 \cos 30^\circ \cdot \sin 20^\circ as the sum or difference of trigonometric ratios.

Solution:

Use the identity: 2cosxsiny=sin(x+y)sin(xy)2 \cos x \cdot \sin y = \sin(x+y) - \sin(x-y)

Here, rewrite 4cos30sin204 \cos 30^\circ \cdot \sin 20^\circ as: 22cos30sin202 \cdot 2 \cos 30^\circ \cdot \sin 20^\circ

Apply the identity for 2cos30sin202 \cos 30^\circ \cdot \sin 20^\circ: 2cos30sin20=sin(30+20)sin(3020)2 \cos 30^\circ \cdot \sin 20^\circ = \sin(30^\circ + 20^\circ) - \sin(30^\circ - 20^\circ)

=sin50sin10= \sin 50^\circ - \sin 10^\circ

Now multiply by 2: 4cos30sin20=2(sin50sin10)4 \cos 30^\circ \cdot \sin 20^\circ = 2 (\sin 50^\circ - \sin 10^\circ)

Final answer: 4cos30sin20=2sin502sin104 \cos 30^\circ \cdot \sin 20^\circ = 2 \sin 50^\circ - 2 \sin 10^\circ


Let me know if you'd like a more detailed explanation or further assistance. Here are some related questions:

  1. How can product-to-sum formulas simplify trigonometric proofs?
  2. Can you prove similar identities for other angles using the same approach?
  3. How do double-angle and triple-angle formulas relate to these problems?
  4. What are the limitations of trigonometric identities in simplifying expressions?
  5. How can graphical representations help verify trigonometric proofs?

Tip: Always check identities with known values (like sin30\sin 30^\circ) to confirm their validity during proofs.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric identities
Product-to-sum formulas
Simplification of trigonometric expressions

Formulas

sin(x) * sin(y) = 1/2 [cos(x-y) - cos(x+y)]
cos(x) * cos(y) = 1/2 [cos(x-y) + cos(x+y)]
sin(x) * sin(90° - x) = 1/2 * sin(2x)

Theorems

Product-to-sum formulas
Properties of trigonometric functions

Suitable Grade Level

Grades 11-12