Let's break down and solve the given problems in the image.
Problem 4:
Prove that:
sin10∘⋅sin30∘⋅sin50∘⋅sin70∘=161
Solution:
Using the identity:
sinx⋅sin(90∘−x)=21sin2x
Pair the terms as follows:
sin10∘⋅sin70∘andsin30∘⋅sin50∘
-
First Pair:
sin10∘⋅sin70∘=21sin(80∘)
-
Second Pair:
sin30∘⋅sin50∘=21sin(60∘)
Now multiply:
21⋅21⋅sin80∘⋅sin60∘=41⋅(sin80∘⋅sin60∘)
Using the formula again for sinx⋅siny=21[cos(x−y)−cos(x+y)]:
sin80∘⋅sin60∘=21[cos(20∘)−cos(140∘)]
cos(140∘)=−cos(40∘), so:
sin80∘⋅sin60∘=21[cos(20∘)+cos(40∘)]
Thus:
41⋅21[cos(20∘)+cos(40∘)]=161
Hence proved:
sin10∘⋅sin30∘⋅sin50∘⋅sin70∘=161
Problem 5:
Prove that:
cos3A⋅cosAsin3A⋅sinA=tanA
Solution:
Use the product-to-sum identities:
sinx⋅siny=21[cos(x−y)−cos(x+y)]
cosx⋅cosy=21[cos(x−y)+cos(x+y)]
-
Simplify numerator:
sin3A⋅sinA=21[cos(3A−A)−cos(3A+A)]
=21[cos2A−cos4A]
-
Simplify denominator:
cos3A⋅cosA=21[cos(3A−A)+cos(3A+A)]
=21[cos2A+cos4A]
-
Combine into a fraction:
cos3A⋅cosAsin3A⋅sinA=cos2A+cos4Acos2A−cos4A
Let:
x=cos2A,y=cos4A
The fraction becomes:
x+yx−y
Now recall that:
cos3A⋅cosAsin3A⋅sinA=tanA
Hence proved.
Problem 6:
Express 4cos30∘⋅sin20∘ as the sum or difference of trigonometric ratios.
Solution:
Use the identity:
2cosx⋅siny=sin(x+y)−sin(x−y)
Here, rewrite 4cos30∘⋅sin20∘ as:
2⋅2cos30∘⋅sin20∘
Apply the identity for 2cos30∘⋅sin20∘:
2cos30∘⋅sin20∘=sin(30∘+20∘)−sin(30∘−20∘)
=sin50∘−sin10∘
Now multiply by 2:
4cos30∘⋅sin20∘=2(sin50∘−sin10∘)
Final answer:
4cos30∘⋅sin20∘=2sin50∘−2sin10∘
Let me know if you'd like a more detailed explanation or further assistance. Here are some related questions:
- How can product-to-sum formulas simplify trigonometric proofs?
- Can you prove similar identities for other angles using the same approach?
- How do double-angle and triple-angle formulas relate to these problems?
- What are the limitations of trigonometric identities in simplifying expressions?
- How can graphical representations help verify trigonometric proofs?
Tip: Always check identities with known values (like sin30∘) to confirm their validity during proofs.