Math Problem Statement

已知:a不等于b,a^2+b=b^2+c=c^2+a

求证:2(a+b+c)=a^2+b^2+c^2+3(bc+ca+ab)

Solution

我们先从已知条件开始分析。给出的等式是:

a2+b=b2+c=c2+aa^2 + b = b^2 + c = c^2 + a

为方便处理,我们可以将这个式子分为三个部分来分析。

第一步:将已知的等式分解

我们分别写出三个等式:

a2+b=b2+c=c2+aa^2 + b = b^2 + c = c^2 + a

等式一:a2+b=b2+ca^2 + b = b^2 + c

等式二:b2+c=c2+ab^2 + c = c^2 + a

第二步:化简等式

我们先从等式一入手:

a2+b=b2+ca^2 + b = b^2 + c

将右边的 b2+cb^2 + c 移到左边,得:

a2b2=cba^2 - b^2 = c - b

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Simultaneous Equations
Polynomial Equations

Formulas

a^2 + b = b^2 + c = c^2 + a
2(a+b+c) = a^2 + b^2 + c^2 + 3(bc+ca+ab)

Theorems

Symmetry in Equations
Polynomial Identity

Suitable Grade Level

Grades 10-12