Math Problem Statement
已知:a不等于b,a^2+b=b^2+c=c^2+a
求证:2(a+b+c)=a^2+b^2+c^2+3(bc+ca+ab)
Solution
我们先从已知条件开始分析。给出的等式是:
为方便处理,我们可以将这个式子分为三个部分来分析。
第一步:将已知的等式分解
我们分别写出三个等式:
等式一:
等式二:
第二步:化简等式
我们先从等式一入手:
将右边的 移到左边,得:
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Algebra
Simultaneous Equations
Polynomial Equations
Formulas
a^2 + b = b^2 + c = c^2 + a
2(a+b+c) = a^2 + b^2 + c^2 + 3(bc+ca+ab)
Theorems
Symmetry in Equations
Polynomial Identity
Suitable Grade Level
Grades 10-12
Related Recommendation
Proving Polynomial Identity: 2(a^2)(b^2) + 2(b^2)(c^2) + 2(c^2)(a^2) = (a^4)(b^4)(c^4)
Prove the Identity a^2 + b^2 + c^2 = a^2 + b^2 + c^2 from Symmetric Equations
Proof of (2a + bc)(2b + ca)(2c + ab) = (4 - a^2)(4 - b^2)(4 - c^2)
Proof of Symmetric Cubic Polynomial Equation with Real Numbers
Proving (a² + b²)(b² + c²) = (ab + bc)² for Continued Proportion