Math Problem Statement

prove this

Prove the identity: tanh^2(x) + sech^2(x) = 1.

Solution

To prove the identity:

tanh2(x)+\sech2(x)=1,\tanh^2(x) + \sech^2(x) = 1,

we can start from the definitions of the hyperbolic tangent (tanh(x)\tanh(x)) and hyperbolic secant (\sech(x)\sech(x)) functions:

  1. Definition of hyperbolic functions:

    • tanh(x)=sinh(x)cosh(x)\tanh(x) = \frac{\sinh(x)}{\cosh(x)},
    • \sech(x)=1cosh(x)\sech(x) = \frac{1}{\cosh(x)}, where sinh(x)=exex2\sinh(x) = \frac{e^x - e^{-x}}{2} and cosh(x)=ex+ex2\cosh(x) = \frac{e^x + e^{-x}}{2}.
  2. Substituting definitions: Substitute tanh(x)\tanh(x) and \sech(x)\sech(x) into tanh2(x)+\sech2(x)\tanh^2(x) + \sech^2(x): tanh2(x)+\sech2(x)=(sinh(x)cosh(x))2+(1cosh(x))2.\tanh^2(x) + \sech^2(x) = \left(\frac{\sinh(x)}{\cosh(x)}\right)^2 + \left(\frac{1}{\cosh(x)}\right)^2.

  3. Simplifying: Rewrite using a common denominator (cosh2(x)\cosh^2(x)): tanh2(x)+\sech2(x)=sinh2(x)cosh2(x)+1cosh2(x).\tanh^2(x) + \sech^2(x) = \frac{\sinh^2(x)}{\cosh^2(x)} + \frac{1}{\cosh^2(x)}.

    Combine terms: tanh2(x)+\sech2(x)=sinh2(x)+1cosh2(x).\tanh^2(x) + \sech^2(x) = \frac{\sinh^2(x) + 1}{\cosh^2(x)}.

  4. Hyperbolic identity: Recall the fundamental hyperbolic identity: cosh2(x)sinh2(x)=1.\cosh^2(x) - \sinh^2(x) = 1.

    Rearrange it: cosh2(x)=sinh2(x)+1.\cosh^2(x) = \sinh^2(x) + 1.

    Substitute cosh2(x)\cosh^2(x) back into the expression: tanh2(x)+\sech2(x)=cosh2(x)cosh2(x)=1.\tanh^2(x) + \sech^2(x) = \frac{\cosh^2(x)}{\cosh^2(x)} = 1.

  5. Conclusion: Therefore, the identity tanh2(x)+\sech2(x)=1\tanh^2(x) + \sech^2(x) = 1 is proven.


Would you like further clarification on any step? Here are 5 related questions to deepen your understanding:

  1. How are hyperbolic functions related to their trigonometric counterparts?
  2. Can you derive the fundamental hyperbolic identity cosh2(x)sinh2(x)=1\cosh^2(x) - \sinh^2(x) = 1 from exponential definitions?
  3. What are other identities involving tanh(x)\tanh(x) and \sech(x)\sech(x)?
  4. How can hyperbolic identities be used in solving differential equations?
  5. Can you explore the graphs of tanh(x)\tanh(x) and \sech(x)\sech(x) to understand their behavior visually?

Tip: Memorize the key hyperbolic identities—they often simplify otherwise complex problems!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Hyperbolic Functions
Algebraic Identities

Formulas

tanh(x) = sinh(x) / cosh(x)
sech(x) = 1 / cosh(x)
cosh^2(x) - sinh^2(x) = 1

Theorems

Fundamental Hyperbolic Identity

Suitable Grade Level

Grades 11-12