Math Problem Statement
Prove the following double angle identities for the hyperbolic function. (a) sinh2x = 2sinhxcoshx (b) cosh2x = cosh2x+sinh2x
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Hyperbolic Functions
Double Angle Identities
Exponential Functions
Formulas
sinh(x) = (e^x - e^(-x))/2
cosh(x) = (e^x + e^(-x))/2
sinh(2x) = 2sinh(x)cosh(x)
cosh(2x) = cosh^2(x) + sinh^2(x)
Theorems
Hyperbolic Double Angle Formulas
Suitable Grade Level
Undergraduate Mathematics
Related Recommendation
Proof of the Hyperbolic Identity sinh(x+y) = sinh(x)cosh(y) + cosh(x)sinh(y)
Proving the Identity for cosh(x + y) using Hyperbolic Functions
Proving cosh(x) + sinh(x) = e^x Using Hyperbolic Function Identities
Prove Cosine Times Hyperbolic Cosine Identity with Trigonometric Equation
Proving coth^2(x - 1) = csch^2(x) Using Hyperbolic Function Identities