Math Problem Statement

Prove the following double angle identities for the hyperbolic function. (a) sinh2x = 2sinhxcoshx (b) cosh2x = cosh2x+sinh2x

Solution

Let's prove the given hyperbolic double angle identities step by step:

(a) sinh(2x)=2sinh(x)cosh(x)\sinh(2x) = 2\sinh(x)\cosh(x)

Proof: The hyperbolic sine function is defined as:

sinh(x)=exex2\sinh(x) = \frac{e^x - e^{-x}}{2}

The hyperbolic cosine function is defined as:

cosh(x)=ex+ex2\cosh(x) = \frac{e^x + e^{-x}}{2}

We want to show that sinh(2x)=2sinh(x)cosh(x)\sinh(2x) = 2\sinh(x)\cosh(x).

Start with the definition of sinh(2x)\sinh(2x):

sinh(2x)=e2xe2x2\sinh(2x) = \frac{e^{2x} - e^{-2x}}{2}

Now, express e2xe^{2x} and e2xe^{-2x} using properties of exponents:

sinh(2x)=(ex)2(ex)22\sinh(2x) = \frac{\left( e^x \right)^2 - \left( e^{-x} \right)^2}{2}

This expression is a difference of squares, so we can factor it as:

sinh(2x)=(exex)(ex+ex)2\sinh(2x) = \frac{(e^x - e^{-x})(e^x + e^{-x})}{2}

But we know from the definitions of hyperbolic functions that:

sinh(x)=exex2,cosh(x)=ex+ex2\sinh(x) = \frac{e^x - e^{-x}}{2}, \quad \cosh(x) = \frac{e^x + e^{-x}}{2}

So:

sinh(2x)=2sinh(x)cosh(x)\sinh(2x) = 2\sinh(x)\cosh(x)

This proves the identity.


(b) cosh(2x)=cosh2(x)+sinh2(x)\cosh(2x) = \cosh^2(x) + \sinh^2(x)

Proof: The hyperbolic cosine function cosh(x)\cosh(x) is:

cosh(x)=ex+ex2\cosh(x) = \frac{e^x + e^{-x}}{2}

We want to prove that:

cosh(2x)=cosh2(x)+sinh2(x)\cosh(2x) = \cosh^2(x) + \sinh^2(x)

Start by expressing cosh(2x)\cosh(2x) in terms of exponentials:

cosh(2x)=e2x+e2x2\cosh(2x) = \frac{e^{2x} + e^{-2x}}{2}

Next, expand e2xe^{2x} and e2xe^{-2x} in terms of exe^x and exe^{-x}:

cosh(2x)=(ex)2+(ex)22\cosh(2x) = \frac{(e^x)^2 + (e^{-x})^2}{2}

Now recall the definitions of cosh(x)\cosh(x) and sinh(x)\sinh(x):

cosh(x)=ex+ex2,sinh(x)=exex2\cosh(x) = \frac{e^x + e^{-x}}{2}, \quad \sinh(x) = \frac{e^x - e^{-x}}{2}

We want to check if:

cosh(2x)=cosh2(x)+sinh2(x)\cosh(2x) = \cosh^2(x) + \sinh^2(x)

Substitute the definitions of cosh(x)\cosh(x) and sinh(x)\sinh(x) into the right-hand side:

cosh2(x)+sinh2(x)=(ex+ex2)2+(exex2)2\cosh^2(x) + \sinh^2(x) = \left( \frac{e^x + e^{-x}}{2} \right)^2 + \left( \frac{e^x - e^{-x}}{2} \right)^2

Now expand both squares:

=(ex+ex)24+(exex)24= \frac{(e^x + e^{-x})^2}{4} + \frac{(e^x - e^{-x})^2}{4}

Using the identities (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2 and (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2, we get:

=e2x+2+e2x4+e2x2+e2x4= \frac{e^{2x} + 2 + e^{-2x}}{4} + \frac{e^{2x} - 2 + e^{-2x}}{4}

Now combine the terms:

=2e2x+2e2x4=e2x+e2x2= \frac{2e^{2x} + 2e^{-2x}}{4} = \frac{e^{2x} + e^{-2x}}{2}

This is exactly cosh(2x)\cosh(2x), which proves the identity.


Summary:

  • (a) sinh(2x)=2sinh(x)cosh(x)\sinh(2x) = 2\sinh(x)\cosh(x)
  • (b) cosh(2x)=cosh2(x)+sinh2(x)\cosh(2x) = \cosh^2(x) + \sinh^2(x)

Would you like further details or have any questions on these proofs?

Relative Questions:

  1. How do the hyperbolic identities differ from trigonometric identities?
  2. Can we derive other double angle identities from these hyperbolic ones?
  3. How are hyperbolic functions used in real-world applications?
  4. What are the differences between the definitions of sinh(x)\sinh(x) and cosh(x)\cosh(x)?
  5. Can we extend these identities to complex numbers?

Tip:

The hyperbolic functions sinh(x)\sinh(x) and cosh(x)\cosh(x) are closely related to exponential functions, which makes them useful in solving differential equations, particularly in engineering and physics.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Hyperbolic Functions
Double Angle Identities
Exponential Functions

Formulas

sinh(x) = (e^x - e^(-x))/2
cosh(x) = (e^x + e^(-x))/2
sinh(2x) = 2sinh(x)cosh(x)
cosh(2x) = cosh^2(x) + sinh^2(x)

Theorems

Hyperbolic Double Angle Formulas

Suitable Grade Level

Undergraduate Mathematics