Math Problem Statement
If 2 cos (θ)=x+ 1/x and 2 cos φ=y+ 1/y then prove xy 1/(xy) =2 cos (θ+φ)
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Trigonometry
Algebra
Trigonometric Identities
Formulas
cos(θ) = (x + 1/x) / 2
cos(φ) = (y + 1/y) / 2
cos(θ + φ) = cos(θ)cos(φ) - sin(θ)sin(φ)
Theorems
Cosine Addition Formula
Suitable Grade Level
Grades 11-12
Related Recommendation
Proving Trigonometric Identity: (sin(θ)cos(ϕ))^2 + (sin(θ)sin(ϕ))^2 + cos^2(θ) = 1
Prove Trigonometric Identity: cosec(x)/(cot(x)+tan(x)) = cos(x)
Prove Trigonometric Identity: cos(2x)/(1 - sin(2x)) = (1 + sin(x))/cos(x)
Verifying Trigonometric Identities Using Double and Triple Angle Formulas
Proving the Trigonometric Identity with csc and cot Functions