Math Problem Statement

Let 𝑧 = π‘Ž + 𝑏𝑖 and 𝑀 = 𝑐 + 𝑑𝑖. show that 𝑧𝑀 and 𝑧𝑀 are conjugated.

Solution

To show that zwβ€Ύ\overline{zw} and zβ€Ύβ‹…wβ€Ύ\overline{z} \cdot \overline{w} are conjugates, we start by expressing zz and ww in terms of their real and imaginary parts: z=a+biz = a + bi w=c+diw = c + di where a,b,c,a, b, c, and dd are real numbers, and ii is the imaginary unit with i2=βˆ’1i^2 = -1.

First, compute zwzw: zw=(a+bi)(c+di)zw = (a + bi)(c + di)

Using the distributive property (FOIL method): zw=ac+adi+bci+bdi2zw = ac + adi + bci + bdi^2

Since i2=βˆ’1i^2 = -1, this simplifies to: zw=ac+adi+bci+bd(βˆ’1)zw = ac + adi + bci + bd(-1) zw=ac+adi+bciβˆ’bdzw = ac + adi + bci - bd zw=(acβˆ’bd)+(ad+bc)izw = (ac - bd) + (ad + bc)i

Now, compute the conjugate of zwzw, denoted as zwβ€Ύ\overline{zw}: zwβ€Ύ=(acβˆ’bd)+(ad+bc)iβ€Ύ\overline{zw} = \overline{(ac - bd) + (ad + bc)i} The conjugate of a complex number x+yix + yi is xβˆ’yix - yi: zwβ€Ύ=(acβˆ’bd)βˆ’(ad+bc)i\overline{zw} = (ac - bd) - (ad + bc)i

Next, compute the conjugates of zz and ww: zβ€Ύ=a+biβ€Ύ=aβˆ’bi\overline{z} = \overline{a + bi} = a - bi wβ€Ύ=c+diβ€Ύ=cβˆ’di\overline{w} = \overline{c + di} = c - di

Now, compute the product zβ€Ύβ‹…wβ€Ύ\overline{z} \cdot \overline{w}: zβ€Ύβ‹…wβ€Ύ=(aβˆ’bi)(cβˆ’di)\overline{z} \cdot \overline{w} = (a - bi)(c - di)

Using the distributive property again: zβ€Ύβ‹…wβ€Ύ=acβˆ’adiβˆ’bci+bdi2\overline{z} \cdot \overline{w} = ac - adi - bci + bdi^2

Since i2=βˆ’1i^2 = -1, this simplifies to: zβ€Ύβ‹…wβ€Ύ=acβˆ’adiβˆ’bci+bd(βˆ’1)\overline{z} \cdot \overline{w} = ac - adi - bci + bd(-1) zβ€Ύβ‹…wβ€Ύ=acβˆ’adiβˆ’bciβˆ’bd\overline{z} \cdot \overline{w} = ac - adi - bci - bd zβ€Ύβ‹…wβ€Ύ=(acβˆ’bd)βˆ’(ad+bc)i\overline{z} \cdot \overline{w} = (ac - bd) - (ad + bc)i

We see that: zwβ€Ύ=(acβˆ’bd)βˆ’(ad+bc)i\overline{zw} = (ac - bd) - (ad + bc)i zβ€Ύβ‹…wβ€Ύ=(acβˆ’bd)βˆ’(ad+bc)i\overline{z} \cdot \overline{w} = (ac - bd) - (ad + bc)i

Thus: zwβ€Ύ=zβ€Ύβ‹…wβ€Ύ\overline{zw} = \overline{z} \cdot \overline{w}

Therefore, zwβ€Ύ\overline{zw} and zβ€Ύβ‹…wβ€Ύ\overline{z} \cdot \overline{w} are indeed conjugates.

Do you want details or have any questions?

Here are some related questions to expand on this topic:

  1. What are the properties of complex number conjugates?
  2. How does the modulus of a complex number relate to its conjugate?
  3. Can you show that the product of a complex number and its conjugate is always a non-negative real number?
  4. How do the conjugates of sums and differences of complex numbers relate to the sums and differences of their conjugates?
  5. What is the geometric interpretation of complex conjugation on the complex plane?

Tip: Always remember that the conjugate of a product of two complex numbers is the product of their conjugates.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Conjugation
Multiplication of Complex Numbers

Formulas

z = a + bi
w = c + di
Conjugate of a complex number: zΜ… = a - bi
Product of complex numbers: zw = (ac - bd) + (ad + bc)i

Theorems

The conjugate of a product of two complex numbers is the product of their conjugates.

Suitable Grade Level

Undergraduate (or Advanced High School)