Math Problem Statement

Докажи, что если limn+an=A{nk}:1n1<n2<<nk limn+ank=A\lim_{n\to+\infty}a_{n}=\text{A}\Rightarrow\forall\left\lbrace n_{k}\right\rbrace:1\le n_1<n_2<\ldots<n_{k}\in\text{ }\lim_{n\to+\infty}a_{nk}=A то

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Sequences
Subsequences
Convergence

Formulas

\lim_{n \to +\infty} a_n = A
\forall \{n_k\}: 1 \le n_1 < n_2 < \ldots < n_k \Rightarrow \lim_{k \to +\infty} a_{n_k} = A

Theorems

Subsequence Convergence Theorem

Suitable Grade Level

University level - Calculus