Math Problem Statement

Prove that \(\sqrt{a+bi} + \sqrt{a-bi} = \sqrt{2(a + \sqrt{a^2 + b^2})}\).

Solution

To prove the given equation:

a+bi+abi=2(a+a2+b2),\sqrt{a+bi} + \sqrt{a-bi} = \sqrt{2\left(a + \sqrt{a^2 + b^2}\right)},

we'll proceed step by step.


Step 1: Represent complex square roots

The square root of a complex number z=x+yiz = x + yi can be written in polar form or Cartesian form, but here we will directly use the formula for the square root of a complex number:

a+bi=r+a2+isgn(b)ra2,\sqrt{a+bi} = \sqrt{\frac{r + a}{2}} + i \, \text{sgn}(b) \sqrt{\frac{r - a}{2}},

where:

  • r=a2+b2r = \sqrt{a^2 + b^2},
  • sgn(b)\text{sgn}(b) is the sign of bb, which is +1+1 if b>0b > 0 and 1-1 if b<0b < 0.

Similarly, for abi\sqrt{a-bi}: abi=r+a2ira2.\sqrt{a-bi} = \sqrt{\frac{r + a}{2}} - i \, \sqrt{\frac{r - a}{2}}.


Step 2: Add the two square roots

Now add a+bi\sqrt{a+bi} and abi\sqrt{a-bi}:

a+bi+abi=(r+a2+ira2)+(r+a2ira2).\sqrt{a+bi} + \sqrt{a-bi} = \left( \sqrt{\frac{r + a}{2}} + i \sqrt{\frac{r - a}{2}} \right) + \left( \sqrt{\frac{r + a}{2}} - i \sqrt{\frac{r - a}{2}} \right).

The imaginary parts cancel out, leaving:

a+bi+abi=2r+a2.\sqrt{a+bi} + \sqrt{a-bi} = 2 \sqrt{\frac{r + a}{2}}.


Step 3: Simplify the result

Simplify 2r+a22 \sqrt{\frac{r + a}{2}}:

a+bi+abi=2r+a.\sqrt{a+bi} + \sqrt{a-bi} = \sqrt{2} \cdot \sqrt{r + a}.

Since r=a2+b2r = \sqrt{a^2 + b^2}, this becomes:

a+bi+abi=2(a+a2+b2).\sqrt{a+bi} + \sqrt{a-bi} = \sqrt{2 \left(a + \sqrt{a^2 + b^2}\right)}.


Conclusion

Thus, we have proved the required equation:

a+bi+abi=2(a+a2+b2).\sqrt{a+bi} + \sqrt{a-bi} = \sqrt{2\left(a + \sqrt{a^2 + b^2}\right)}.


Do you want a deeper explanation or have any questions?


Related Questions

  1. How can we represent a complex number in polar form?
  2. What is the geometric interpretation of a+bi\sqrt{a+bi}?
  3. How does this formula change if b=0b = 0?
  4. What are the real and imaginary parts of a+bi\sqrt{a+bi}?
  5. Can you generalize this proof for a+bia+bi in polar coordinates?

Tip:

When working with square roots of complex numbers, try expressing them in polar form, as it often simplifies operations like addition or multiplication.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Square Roots
Addition of Complex Numbers

Formulas

Square root of a complex number: \(\sqrt{a+bi} = \sqrt{\frac{r+a}{2}} + i \text{sgn}(b) \sqrt{\frac{r-a}{2}}\)
Magnitude of a complex number: \(r = \sqrt{a^2 + b^2}\)

Theorems

Properties of Complex Numbers
Simplification of Square Roots

Suitable Grade Level

Grades 11-12 or College Level