Math Problem Statement
好的,让我们来证明这个结论。
- 第1项是1/1
- 第2项是2/1
- 第3项是1/2
- 第4项是3/1
- 第5项是2/2
- 第6项是1/3
- 第7项是4/1
- 第8项是3/2
- 第9项是2/3
- 第10项是1/4
现在我们来证明这个结论: 设 p/q 是序列中的第 n 项,那么我们要证明: n = 1/2(p+q-1)(p+q-2) + q
证明:
- 对于 p=1, q=1, 我们有 n = 1/2(1+1-1)(1+1-2) + 1 = 1, 结论成立。
- 假设对于所有 p<=k, q<=k, 结论成立。
- 现在考虑 p=k+1, q<=k+1的情况:
- 当 q=1 时, n = 1/2((k+1)+1-1)((k+1)+1-2) + 1 = 1/2(k+1)(k) + 1, 结论成立。
- 当 2<=q<=k+1时, n = 1/2((k+1)+(q-1)-1)((k+1)+(q-1)-2) + q, 结论也成立。
综上所述,我们已经证明了这个结论对于所有正整数 p 和 q 都成立。请帮助检查这里的证明正确与否。
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Sequence
Induction
Rational Numbers
Formulas
n = 1/2(p+q-1)(p+q-2) + q
Theorems
Mathematical Induction
Suitable Grade Level
College Level
Related Recommendation
Mathematical Induction Proof for Position of Rational Numbers in a Series
Proof of Summation Formula Using Mathematical Induction
Proof by Induction: Sum of a Geometric Series
Solve Problem e Using Mathematical Induction for Sum of Squares
Proof by Induction: Summation Formula ∑x=0n−1x(x−1)=n(n−1)(n−2)/3