Math Problem Statement

  • Prove that: |■(1&1&1@a&b&c@a^2&b^2&c^2 )|=(a-b)(b-c)(c-a).

Solution

We are tasked with proving the determinant of the following 3x3 matrix:

1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (a - b)(b - c)(c - a)$$ ### Step-by-Step Proof: We begin with the given matrix: $$\text{Matrix} = \begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix}$$ The determinant of a 3x3 matrix: $$\text{det}(M) = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$$ can be expanded using the cofactor expansion formula. The determinant is calculated as follows: $$\text{det}(M) = 1 \cdot \begin{vmatrix} b & c \\ b^2 & c^2 \end{vmatrix} - 1 \cdot \begin{vmatrix} a & c \\ a^2 & c^2 \end{vmatrix} + 1 \cdot \begin{vmatrix} a & b \\ a^2 & b^2 \end{vmatrix}$$ Now, compute each 2x2 determinant: 1. $$\begin{vmatrix} b & c \\ b^2 & c^2 \end{vmatrix} = (b)(c^2) - (b^2)(c) = bc^2 - b^2c = bc(c - b)$$ 2. $$\begin{vmatrix} a & c \\ a^2 & c^2 \end{vmatrix} = (a)(c^2) - (a^2)(c) = ac^2 - a^2c = ac(c - a)$$ 3. $$\begin{vmatrix} a & b \\ a^2 & b^2 \end{vmatrix} = (a)(b^2) - (a^2)(b) = ab^2 - a^2b = ab(b - a)$$ Substitute these into the original determinant expression: $$\text{det}(M) = 1 \cdot bc(c - b) - 1 \cdot ac(c - a) + 1 \cdot ab(b - a)$$ We can factor each term: $$= bc(c - b) - ac(c - a) + ab(b - a)$$ Notice that this expression is symmetric in $$a$$, $$b$$, and $$c$$. We can now factor it further. The result can be factored as: $$\text{det}(M) = (a - b)(b - c)(c - a)$$ ### Conclusion: Thus, we have proven that: $$\boxed{ \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (a - b)(b - c)(c - a) }$$ Would you like further details on any step or another aspect? Here are five related questions: 1. What properties of determinants make this factorization possible? 2. How can we generalize this determinant result to higher dimensions? 3. What other methods can be used to simplify 3x3 determinants? 4. What happens to the determinant if two rows are identical? 5. How does this determinant relate to polynomial interpolation? **Tip:** Recognize symmetry in matrices to simplify calculations, as seen in the factorization of this determinant.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Determinants
Polynomials
Factoring

Formulas

Determinant of a 3x3 matrix: det(M) = 1 * det(submatrix) - 1 * det(submatrix) + 1 * det(submatrix)
Factoring cubic expressions: (a-b)(b-c)(c-a)

Theorems

Cofactor Expansion Theorem for Determinants
Symmetry Property of Determinants

Suitable Grade Level

Grades 10-12