Math Problem Statement
Triangle $ABC$ has $\angle ACB = 90^{\circ}$. Point $D$ is on side $\overline{AB}$ such that $AD = CD$. Prove that $D$ is the midpoint of $\overline{AB}$. [asy] pair A, B, C, D; A = (-5,0); D = (0,0); B = (5,0); C = (-3,4); draw(A--B--C--cycle); draw(C--D, dotted); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, N); label("$D$", D, S); [/asy] Since A D
C D , is isosceles, giving the equal angles
; let the measure of these angles be x ∘ . Then, ∠ D C B
−
90 ∘ − x ∘ . Since the angles of add to 180 ∘ , ∠ A B C + ∠ A C B + ∠ B A C
90 ∘ + x ∘
180 ∘ , and solving gives
90 ∘ − x ∘ . Therefore,
, so is isosceles. Therefore, B D
C D
A D , and we conclude that D is the midpoint of ¯¯¯¯¯¯¯¯ A B .
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Geometry
Isosceles Triangles
Right Triangles
Formulas
Angle sum of a triangle: ∠A + ∠B + ∠C = 180°
Theorems
Isosceles Triangle Theorem
Midpoint Theorem
Pythagorean Theorem
Suitable Grade Level
Grades 8-10
Related Recommendation
Proving D is the Midpoint in a Right Triangle with an Isosceles Triangle Property
Proving the Midpoint of Triangle AB Using Isosceles Properties
Chứng Minh Các Đặc Tính Trung Điểm và Đoạn Thẳng Trong Tam Giác ABC
Proving Triangle Congruence in an Isosceles Triangle
Chứng Minh Góc B = Góc C và BD = DC Trong Tam Giác Vuông Cân