Math Problem Statement
soient n et p deux entiers naturels tels que : 1 supérieur ou égal à p supérieur ou égal à n
Démontrer que n combiné de p-1 par n-1 = p combiné de n par p
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Combinatorics
Binomial Coefficients
Factorials
Formulas
Binomial coefficient: \(\binom{n}{k} = \frac{n!}{k!(n-k)!}\)
Symmetry property: \(\binom{n}{k} = \binom{n}{n-k}\)
Theorems
Symmetry of Binomial Coefficients
Factorial Properties
Suitable Grade Level
Grades 10-12
Related Recommendation
Combinatorial Proof of \(\sum_{k=0}^n \binom{k}{i} = \binom{n+1}{i+1}\)
Combinatorial Proof for Binomial Sum Identity \(\sum_{k=0}^n \binom{k}{i} = \binom{n+1}{i+1}\)
Recursive Property of Binomial Coefficients Explained with Proof
Binomial Theorem Proof of 2^n = ∑_{k=0}^{n} (-1)^k (n choose k) 3^{n-k}
Prove the Sum of Binomial Coefficients Equals 2^n Using Binomial Theorem