Math Problem Statement

If the random variable X takes the values 1, 2, 3, and 4 such that 2P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4), find the probability distribution and cumulative distribution function of X.

Solution

To find the probability distribution and cumulative distribution function (CDF) of XX, follow these steps:

Probability Distribution:

  1. Let P(X=2)=pP(X=2) = p.

  2. According to the problem:

    • 2P(X=1)=3P(X=2)2P(X=1) = 3P(X=2) implies P(X=1)=32pP(X=1) = \frac{3}{2}p.
    • P(X=2)=pP(X=2) = p.
    • P(X=3)=pP(X=3) = p.
    • 5P(X=4)=P(X=3)5P(X=4) = P(X=3) implies P(X=4)=p5P(X=4) = \frac{p}{5}.
  3. Using the total probability condition: P(X=1)+P(X=2)+P(X=3)+P(X=4)=1P(X=1) + P(X=2) + P(X=3) + P(X=4) = 1 32p+p+p+p5=1\frac{3}{2}p + p + p + \frac{p}{5} = 1 15p10+10p10+10p10+2p10=1\frac{15p}{10} + \frac{10p}{10} + \frac{10p}{10} + \frac{2p}{10} = 1 37p10=1\frac{37p}{10} = 1 p=1037p = \frac{10}{37}

  4. Substitute pp back to find the probabilities:

    • P(X=1)=32p=32×1037=1537P(X=1) = \frac{3}{2}p = \frac{3}{2} \times \frac{10}{37} = \frac{15}{37}
    • P(X=2)=1037P(X=2) = \frac{10}{37}
    • P(X=3)=1037P(X=3) = \frac{10}{37}
    • P(X=4)=p5=237P(X=4) = \frac{p}{5} = \frac{2}{37}

Cumulative Distribution Function (CDF):

The CDF, F(x)=P(Xx)F(x) = P(X \leq x), is calculated as follows:

  • F(1)=P(X1)=P(X=1)=1537F(1) = P(X \leq 1) = P(X = 1) = \frac{15}{37}
  • F(2)=P(X2)=P(X=1)+P(X=2)=1537+1037=2537F(2) = P(X \leq 2) = P(X=1) + P(X=2) = \frac{15}{37} + \frac{10}{37} = \frac{25}{37}
  • F(3)=P(X3)=P(X=1)+P(X=2)+P(X=3)=2537+1037=3537F(3) = P(X \leq 3) = P(X=1) + P(X=2) + P(X=3) = \frac{25}{37} + \frac{10}{37} = \frac{35}{37}
  • F(4)=P(X4)=P(X=1)+P(X=2)+P(X=3)+P(X=4)=3537+237=1F(4) = P(X \leq 4) = P(X=1) + P(X=2) + P(X=3) + P(X=4) = \frac{35}{37} + \frac{2}{37} = 1

Summary:

  • Probability Distribution:

    • P(X=1)=1537P(X=1) = \frac{15}{37}
    • P(X=2)=1037P(X=2) = \frac{10}{37}
    • P(X=3)=1037P(X=3) = \frac{10}{37}
    • P(X=4)=237P(X=4) = \frac{2}{37}
  • Cumulative Distribution Function:

    • F(1)=1537F(1) = \frac{15}{37}
    • F(2)=2537F(2) = \frac{25}{37}
    • F(3)=3537F(3) = \frac{35}{37}
    • F(4)=1F(4) = 1

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Probability distribution
Cumulative distribution function (CDF)

Formulas

P(X=1) = 3/2 * P(X=2)
P(X=4) = 1/5 * P(X=3)
Sum of probabilities = 1

Theorems

Law of Total Probability

Suitable Grade Level

Undergraduate Statistics/Probability