Math Problem Statement

Solve the problems related to powers and exponents (potens and exponent) shown in the image.

Solution

The image contains a series of math problems related to powers and exponents. I'll guide you through solving some of the problems shown.

Let's solve a few selected problems:

  1. Problem 1207: Skriv som en potens (Write as a power)

    • a) 34353^4 \cdot 3^5
    • b) 4243444^2 \cdot 4^3 \cdot 4^4

    Solution:

    • a) 3435=34+5=393^4 \cdot 3^5 = 3^{4+5} = 3^9
    • b) 424344=42+3+4=494^2 \cdot 4^3 \cdot 4^4 = 4^{2+3+4} = 4^9
  2. Problem 1208: Bestäm exponenten mm så att likheten gäller (Determine the exponent mm so that the equation holds)

    • a) 4m=45424^m = 4^5 \cdot 4^2
    • b) 10m=10610410^m = 10^6 \cdot 10^{-4}

    Solution:

    • a) 4m=45+2=474^m = 4^{5+2} = 4^7, so m=7m = 7
    • b) 10m=106+(4)=10210^m = 10^{6 + (-4)} = 10^2, so m=2m = 2
  3. Problem 1209: Beräkna utan digitalt hjälpmedel (Calculate without digital tools)

    • a) 22232^2 \cdot 2^3
    • b) 5956\frac{5^9}{5^6}

    Solution:

    • a) 2223=22+3=25=322^2 \cdot 2^3 = 2^{2+3} = 2^5 = 32
    • b) 5956=596=53=125\frac{5^9}{5^6} = 5^{9-6} = 5^3 = 125
  4. Problem 1214: Skriv som en potens med angiven bas (Write as a power with the given base)

    • a) 34273^4 \cdot 27 (Bas 3)
    • b) 571255^7 \cdot 125 (Bas 5)

    Solution:

    • a) 27=3327 = 3^3, so 3427=3433=34+3=373^4 \cdot 27 = 3^4 \cdot 3^3 = 3^{4+3} = 3^7
    • b) 125=53125 = 5^3, so 57125=5753=57+3=5105^7 \cdot 125 = 5^7 \cdot 5^3 = 5^{7+3} = 5^{10}
  5. Problem 1215: Följande uttryck är en produkt av två potenser. Skriv om uttrycken som en potens av en produkt (The following expressions are a product of two powers. Rewrite the expressions as a power of a product)

    • a) 23x32^3 \cdot x^3
    • b) 32y23^2 \cdot y^2

    Solution:

    • a) 23x3=(2x)32^3 \cdot x^3 = (2 \cdot x)^3
    • b) 32y2=(3y)23^2 \cdot y^2 = (3 \cdot y)^2

Would you like further details on these solutions or help with any other problems on this page?

Follow-Up Questions:

  1. How would you apply the properties of exponents to simplify expressions like amana^m \cdot a^n?
  2. What is the result of dividing powers with the same base, such as am/ana^m / a^n?
  3. Can you determine the value of mm in an equation involving powers with the same base, such as bm=bpbqb^m = b^p \cdot b^q?
  4. How can you express a power raised to another power, such as (am)n(a^m)^n, in a simpler form?
  5. What are some real-world applications of powers and exponents?

Tip:

When simplifying expressions with exponents, always remember the fundamental rules: aman=am+na^m \cdot a^n = a^{m+n}, am/an=amna^m / a^n = a^{m-n}, and (am)n=amn(a^m)^n = a^{m \cdot n}. These will guide you through most exponentiation problems.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Powers
Multiplication and division of powers
Simplification of algebraic expressions

Formulas

a^m * a^n = a^(m+n)
a^m / a^n = a^(m-n)
(a^m)^n = a^(m*n)

Theorems

Laws of Exponents
Product of Powers Property
Quotient of Powers Property
Power of a Power Property

Suitable Grade Level

Grades 7-9