Math Problem Statement

1. a) Je dána funkce: f(x) = (1 - cos(x/2)) / x^2. Najděte rozvoj funkce f do mocninné řady se středem v bodě 0 (napište obecný předpis, ze kterého bude patrné, že se jedná o mocninnou řadu a vypište první 3 členy rozvoje). Určete obor konvergence této mocninné řady. b) Určete přibližnou hodnotu integrálu ∫_0^1 g(x) dx, kde g(x) = Σ (n=1, ∞) ((-1)^(n-1) (2n+1)x^(2n)) / n^3 s chybou menší než 1/50. Svou odpověď zdůvodněte! Dále vyjádřete funkci g'(x) jako nekonečnou řadu.

Solution

Let's solve the given problem step by step.


1. a) Power Series Expansion of f(x)=1cosx2x2f(x) = \frac{1 - \cos\frac{x}{2}}{x^2}

Step 1: Expand 1cosx21 - \cos\frac{x}{2} into a Taylor series.

Using the Taylor series expansion of cosu\cos u around u=0u = 0: cosu=1u22!+u44!\cos u = 1 - \frac{u^2}{2!} + \frac{u^4}{4!} - \dots For u=x2u = \frac{x}{2}: cosx2=1(x2)22!+(x2)44!\cos\frac{x}{2} = 1 - \frac{\left(\frac{x}{2}\right)^2}{2!} + \frac{\left(\frac{x}{2}\right)^4}{4!} - \dots Thus: 1cosx2=(x2)22!(x2)44!+=x28x4192+1 - \cos\frac{x}{2} = \frac{\left(\frac{x}{2}\right)^2}{2!} - \frac{\left(\frac{x}{2}\right)^4}{4!} + \dots = \frac{x^2}{8} - \frac{x^4}{192} + \dots

Step 2: Divide by x2x^2.

f(x)=1cosx2x2=x28x4192+x2=18x2192+f(x) = \frac{1 - \cos\frac{x}{2}}{x^2} = \frac{\frac{x^2}{8} - \frac{x^4}{192} + \dots}{x^2} = \frac{1}{8} - \frac{x^2}{192} + \dots

The first three terms of the power series expansion are: f(x)=18x2192+f(x) = \frac{1}{8} - \frac{x^2}{192} + \dots

Step 3: Determine the radius of convergence.

The series converges where the Taylor series for cosx2\cos \frac{x}{2} converges, which is for all xRx \in \mathbb{R}, as the series for cosine converges everywhere. Hence, the interval of convergence is (,)(-\infty, \infty).


1. b) Approximate 01g(x)dx\int_0^1 g(x) \, dx, where:

g(x)=n=1(1)n1(2n+1)x2nn3.g(x) = \sum_{n=1}^\infty \frac{(-1)^{n-1} (2n+1)x^{2n}}{n^3}.

Step 1: Truncate the series.

We approximate g(x)g(x) by considering the first few terms. For n=1,2,3n = 1, 2, 3: g(x)(1)0(21+1)x2113+(1)1(22+1)x2223+(1)2(23+1)x2333.g(x) \approx \frac{(-1)^0 (2 \cdot 1 + 1)x^{2 \cdot 1}}{1^3} + \frac{(-1)^1 (2 \cdot 2 + 1)x^{2 \cdot 2}}{2^3} + \frac{(-1)^2 (2 \cdot 3 + 1)x^{2 \cdot 3}}{3^3}. This simplifies to: g(x)3x25x48+7x627.g(x) \approx 3x^2 - \frac{5x^4}{8} + \frac{7x^6}{27}.

Step 2: Integrate term by term.

[ \int_0^1 g(x) , dx \approx \int_0^1 \left( 3x^2 - \frac{5x^4}{8} + \frac{7x^6}{27

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Power Series Expansion
Taylor Series
Radius of Convergence
Integration of Series
Differentiation of Infinite Series

Formulas

Taylor series for cos(x): cos(x) = 1 - x^2/2! + x^4/4! - ...
Power series term-by-term integration
Term-by-term differentiation for infinite series

Theorems

Taylor Series Expansion Theorem
Uniform Convergence for Term-by-Term Integration
Radius and Interval of Convergence

Suitable Grade Level

Undergraduate - Calculus II or III