Math Problem Statement

Subtract 2x2+x+1 from 4x2+3x+5. What is the result? a. 2x2+2x+4 b. 2x2+4x+4 c. 2x2+2x+3 d. 4x2+2x+5 Add the polynomials 3x2+4x+5 and 2x2+x+3. What is the result? a. 5x2+5x+8 b. 5x2+5x+15 c. 4x2+5x+8 d. 5x2+5x+7 What is the sum of 4x2+2x+3 and x2+3x+5? a. 5x2+5x+8 b. 4x2+5x+8 c. 5x2+x+8 d. 5x2+6x+8 Subtract 2x2+3x+4 from 5x2+6x+7. What is the result? a. 4x2+3x+3 b. 3x2+4x+3 c. 3x2+3x+2 d. 3x2+3x+3 Add the polynomials x2+4x+4 and 2x2+3x+1. What is the result? a. 3x2+6x+5 b. 3x2+6x+4 c. 3x2+7x+5 d. 3x2+7x+1 What is the result of adding 3x2+2x+1 and 2x2+4x+3? a. 5x2+6x+1 b. 5x2+6x+4 c. 5x2+6x+2 d. 5x2+7x+4 What is the product of (2x+5) and (x−3)? a. 2x2−x−15 b. 2x2+x−15 c. 2x2−5x−15 d. 2x2−5x+15 Add the polynomials 2x2+6x+4 and 3x2+4x+5. What is the result? a. 4x2+7x+9 b. 5x2+7x+8 c. 5x2+10x+9 d. 5x2+6x+9 What is the product of (x−4) and (x+3)? a. x2−2x−12 b. x2+x−12 c. x2−x−12 d. x2−x+12 Subtract 2x2+4x+6 from 6x2+5x+7. What is the result? a. 4x2+x+2 b. 3x2+x+1 c. 4x2+x+1 d.

Solution

Let’s solve each of the given problems step-by-step:


1. Subtract 2x2+x+12x^2 + x + 1 from 4x2+3x+54x^2 + 3x + 5:

(4x2+3x+5)(2x2+x+1)=4x22x2+3xx+51=2x2+2x+4(4x^2 + 3x + 5) - (2x^2 + x + 1) = 4x^2 - 2x^2 + 3x - x + 5 - 1 = 2x^2 + 2x + 4

Answer: a. 2x2+2x+42x^2 + 2x + 4


2. Add 3x2+4x+53x^2 + 4x + 5 and 2x2+x+32x^2 + x + 3:

(3x2+4x+5)+(2x2+x+3)=3x2+2x2+4x+x+5+3=5x2+5x+8(3x^2 + 4x + 5) + (2x^2 + x + 3) = 3x^2 + 2x^2 + 4x + x + 5 + 3 = 5x^2 + 5x + 8

Answer: a. 5x2+5x+85x^2 + 5x + 8


3. Add 4x2+2x+34x^2 + 2x + 3 and x2+3x+5x^2 + 3x + 5:

(4x2+2x+3)+(x2+3x+5)=4x2+x2+2x+3x+3+5=5x2+5x+8(4x^2 + 2x + 3) + (x^2 + 3x + 5) = 4x^2 + x^2 + 2x + 3x + 3 + 5 = 5x^2 + 5x + 8

Answer: a. 5x2+5x+85x^2 + 5x + 8


4. Subtract 2x2+3x+42x^2 + 3x + 4 from 5x2+6x+75x^2 + 6x + 7:

(5x2+6x+7)(2x2+3x+4)=5x22x2+6x3x+74=3x2+3x+3(5x^2 + 6x + 7) - (2x^2 + 3x + 4) = 5x^2 - 2x^2 + 6x - 3x + 7 - 4 = 3x^2 + 3x + 3

Answer: d. 3x2+3x+33x^2 + 3x + 3


5. Add x2+4x+4x^2 + 4x + 4 and 2x2+3x+12x^2 + 3x + 1:

(x2+4x+4)+(2x2+3x+1)=x2+2x2+4x+3x+4+1=3x2+7x+5(x^2 + 4x + 4) + (2x^2 + 3x + 1) = x^2 + 2x^2 + 4x + 3x + 4 + 1 = 3x^2 + 7x + 5

Answer: c. 3x2+7x+53x^2 + 7x + 5


6. Add 3x2+2x+13x^2 + 2x + 1 and 2x2+4x+32x^2 + 4x + 3:

(3x2+2x+1)+(2x2+4x+3)=3x2+2x2+2x+4x+1+3=5x2+6x+4(3x^2 + 2x + 1) + (2x^2 + 4x + 3) = 3x^2 + 2x^2 + 2x + 4x + 1 + 3 = 5x^2 + 6x + 4

Answer: b. 5x2+6x+45x^2 + 6x + 4


7. Find the product of (2x+5)(2x + 5) and (x3)(x - 3):

(2x+5)(x3)=2xx+2x(3)+5x+5(3)(2x + 5)(x - 3) = 2x \cdot x + 2x \cdot (-3) + 5 \cdot x + 5 \cdot (-3) =2x26x+5x15=2x2x15= 2x^2 - 6x + 5x - 15 = 2x^2 - x - 15

Answer: a. 2x2x152x^2 - x - 15


8. Add 2x2+6x+42x^2 + 6x + 4 and 3x2+4x+53x^2 + 4x + 5:

(2x2+6x+4)+(3x2+4x+5)=2x2+3x2+6x+4x+4+5=5x2+10x+9(2x^2 + 6x + 4) + (3x^2 + 4x + 5) = 2x^2 + 3x^2 + 6x + 4x + 4 + 5 = 5x^2 + 10x + 9

Answer: c. 5x2+10x+95x^2 + 10x + 9


9. Find the product of (x4)(x - 4) and (x+3)(x + 3):

(x4)(x+3)=xx+x34x43(x - 4)(x + 3) = x \cdot x + x \cdot 3 - 4 \cdot x - 4 \cdot 3 =x2+3x4x12=x2x12= x^2 + 3x - 4x - 12 = x^2 - x - 12

Answer: c. x2x12x^2 - x - 12


10. Subtract 2x2+4x+62x^2 + 4x + 6 from 6x2+5x+76x^2 + 5x + 7:

(6x2+5x+7)(2x2+4x+6)=6x22x2+5x4x+76=4x2+x+1(6x^2 + 5x + 7) - (2x^2 + 4x + 6) = 6x^2 - 2x^2 + 5x - 4x + 7 - 6 = 4x^2 + x + 1

Answer: c. 4x2+x+14x^2 + x + 1


Summary of Answers:

  1. a
  2. a
  3. a
  4. d
  5. c
  6. b
  7. a
  8. c
  9. c
  10. c

Do you have any specific questions on the steps, or would you like details about a particular problem?

Related Questions:

  1. How do you subtract polynomials effectively?
  2. What are some shortcuts for adding polynomials?
  3. What is the FOIL method used in polynomial multiplication?
  4. How do you identify and combine like terms in polynomial expressions?
  5. What happens when subtracting polynomials with negative coefficients?

Tip: When adding or subtracting polynomials, always align terms with the same degree to avoid mistakes.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Polynomial Operations
Addition of Polynomials
Subtraction of Polynomials
Multiplication of Polynomials

Formulas

Addition/Subtraction: Combine like terms by degree
Multiplication: Use the distributive property or FOIL method

Theorems

Distributive Property of Multiplication over Addition
Commutative Property of Addition

Suitable Grade Level

Grades 8-10