Math Problem Statement

Subtract 2x2+x+1 from 4x2+3x+5. What is the result? a. 2x2+2x+4 b. 2x2+4x+4 c. 2x2+2x+3 d. 4x2+2x+5 Add the polynomials 3x2+4x+5 and 2x2+x+3. What is the result? a. 5x2+5x+8 b. 5x2+5x+15 c. 4x2+5x+8 d. 5x2+5x+7 What is the sum of 4x2+2x+3 and x2+3x+5? a. 5x2+5x+8 b. 4x2+5x+8 c. 5x2+x+8 d. 5x2+6x+8 Subtract 2x2+3x+4 from 5x2+6x+7. What is the result? a. 4x2+3x+3 b. 3x2+4x+3 c. 3x2+3x+2 d. 3x2+3x+3 Add the polynomials x2+4x+4 and 2x2+3x+1. What is the result? a. 3x2+6x+5 b. 3x2+6x+4 c. 3x2+7x+5 d. 3x2+7x+1 What is the result of adding 3x2+2x+1 and 2x2+4x+3? a. 5x2+6x+1 b. 5x2+6x+4 c. 5x2+6x+2 d. 5x2+7x+4 What is the product of (2x+5) and (x−3)? a. 2x2−x−15 b. 2x2+x−15 c. 2x2−5x−15 d. 2x2−5x+15 Add the polynomials 2x2+6x+4 and 3x2+4x+5. What is the result? a. 4x2+7x+9 b. 5x2+7x+8 c. 5x2+10x+9 d. 5x2+6x+9 What is the product of (x−4) and (x+3)? a. x2−2x−12 b. x2+x−12 c. x2−x−12 d. x2−x+12 Subtract 2x2+4x+6 from 6x2+5x+7. What is the result? a. 4x2+x+2 b. 3x2+x+1 c. 4x2+x+1 d.

Solution

Solutions:


1. Subtract 2x2+x+12x^2 + x + 1 from 4x2+3x+54x^2 + 3x + 5:
(4x2+3x+5)(2x2+x+1)=4x22x2+3xx+51=2x2+2x+4.(4x^2 + 3x + 5) - (2x^2 + x + 1) = 4x^2 - 2x^2 + 3x - x + 5 - 1 = 2x^2 + 2x + 4.
Answer: a. 2x2+2x+4\mathbf{a. \ 2x^2 + 2x + 4}.


2. Add 3x2+4x+53x^2 + 4x + 5 and 2x2+x+32x^2 + x + 3:
(3x2+4x+5)+(2x2+x+3)=3x2+2x2+4x+x+5+3=5x2+5x+8.(3x^2 + 4x + 5) + (2x^2 + x + 3) = 3x^2 + 2x^2 + 4x + x + 5 + 3 = 5x^2 + 5x + 8.
Answer: a. 5x2+5x+8\mathbf{a. \ 5x^2 + 5x + 8}.


3. Add 4x2+2x+34x^2 + 2x + 3 and x2+3x+5x^2 + 3x + 5:
(4x2+2x+3)+(x2+3x+5)=4x2+x2+2x+3x+3+5=5x2+5x+8.(4x^2 + 2x + 3) + (x^2 + 3x + 5) = 4x^2 + x^2 + 2x + 3x + 3 + 5 = 5x^2 + 5x + 8.
Answer: a. 5x2+5x+8\mathbf{a. \ 5x^2 + 5x + 8}.


4. Subtract 2x2+3x+42x^2 + 3x + 4 from 5x2+6x+75x^2 + 6x + 7:
(5x2+6x+7)(2x2+3x+4)=5x22x2+6x3x+74=3x2+3x+3.(5x^2 + 6x + 7) - (2x^2 + 3x + 4) = 5x^2 - 2x^2 + 6x - 3x + 7 - 4 = 3x^2 + 3x + 3.
Answer: d. 3x2+3x+3\mathbf{d. \ 3x^2 + 3x + 3}.


5. Add x2+4x+4x^2 + 4x + 4 and 2x2+3x+12x^2 + 3x + 1:
(x2+4x+4)+(2x2+3x+1)=x2+2x2+4x+3x+4+1=3x2+7x+5.(x^2 + 4x + 4) + (2x^2 + 3x + 1) = x^2 + 2x^2 + 4x + 3x + 4 + 1 = 3x^2 + 7x + 5.
Answer: c. 3x2+7x+5\mathbf{c. \ 3x^2 + 7x + 5}.


6. Add 3x2+2x+13x^2 + 2x + 1 and 2x2+4x+32x^2 + 4x + 3:
(3x2+2x+1)+(2x2+4x+3)=3x2+2x2+2x+4x+1+3=5x2+6x+4.(3x^2 + 2x + 1) + (2x^2 + 4x + 3) = 3x^2 + 2x^2 + 2x + 4x + 1 + 3 = 5x^2 + 6x + 4.
Answer: b. 5x2+6x+4\mathbf{b. \ 5x^2 + 6x + 4}.


7. Product of (2x+5)(2x + 5) and (x3)(x - 3):
Using distributive property: (2x+5)(x3)=2xx+2x(3)+5x+5(3)=2x26x+5x15=2x2x15.(2x + 5)(x - 3) = 2x \cdot x + 2x \cdot (-3) + 5 \cdot x + 5 \cdot (-3) = 2x^2 - 6x + 5x - 15 = 2x^2 - x - 15.
Answer: a. 2x2x15\mathbf{a. \ 2x^2 - x - 15}.


8. Add 2x2+6x+42x^2 + 6x + 4 and 3x2+4x+53x^2 + 4x + 5:
(2x2+6x+4)+(3x2+4x+5)=2x2+3x2+6x+4x+4+5=5x2+10x+9.(2x^2 + 6x + 4) + (3x^2 + 4x + 5) = 2x^2 + 3x^2 + 6x + 4x + 4 + 5 = 5x^2 + 10x + 9.
Answer: c. 5x2+10x+9\mathbf{c. \ 5x^2 + 10x + 9}.


9. Product of (x4)(x - 4) and (x+3)(x + 3):
Using distributive property: (x4)(x+3)=xx+x3+(4)x+(4)3=x2+3x4x12=x2x12.(x - 4)(x + 3) = x \cdot x + x \cdot 3 + (-4) \cdot x + (-4) \cdot 3 = x^2 + 3x - 4x - 12 = x^2 - x - 12.
Answer: a. x2x12\mathbf{a. \ x^2 - x - 12}.


10. Subtract 2x2+4x+62x^2 + 4x + 6 from 6x2+5x+76x^2 + 5x + 7:
(6x2+5x+7)(2x2+4x+6)=6x22x2+5x4x+76=4x2+x+1.(6x^2 + 5x + 7) - (2x^2 + 4x + 6) = 6x^2 - 2x^2 + 5x - 4x + 7 - 6 = 4x^2 + x + 1.
Answer: c. 4x2+x+1\mathbf{c. \ 4x^2 + x + 1}.


Follow-up Questions:

  1. Can you explain why combining like terms is essential in polynomial operations?
  2. How does the distributive property simplify the multiplication of binomials?
  3. What strategies can help avoid errors when subtracting polynomials?
  4. How can you check your work after performing polynomial addition or subtraction?
  5. What are the common mistakes students make when working with polynomials, and how can they be avoided?

Tip:

Always write each step clearly when working with polynomials to avoid missing terms or signs!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Polynomial Addition
Polynomial Subtraction
Polynomial Multiplication
Simplification of Like Terms

Formulas

Polynomial addition: (a_nx^n + ... + a_0) + (b_nx^n + ... + b_0)
Polynomial subtraction: (a_nx^n + ... + a_0) - (b_nx^n + ... + b_0)
Distributive property: (ax + b)(cx + d) = acx^2 + (ad + bc)x + bd

Theorems

Distributive Property

Suitable Grade Level

Grades 7-9