Math Problem Statement

إذا كان لديك الاقتران التالي f(x) = x^3(1-x)، قم بتحليل الاقتران من خلال: 1- إيجاد درجة الاقتران، 2- إيجاد فترات التزايد والتناقص، 3- إيجاد القيم العظمى والصغرى، 4- إيجاد قيم الانعطاف، 5- إيجاد مناطق التقعر لأعلى ولأسفل.

Solution

The question asks to analyze the function f(x)=x3(1x)f(x) = x^3(1-x) through several mathematical aspects. Here's a step-by-step solution:


1. Determine the degree of the function:

The function f(x)=x3(1x)f(x) = x^3(1-x) simplifies as follows: f(x)=x3x4f(x) = x^3 - x^4 This is a polynomial of degree 4 because the highest power of xx is 4.

  • Answer: The degree of the function is 4.

2. Find the intervals of increase and decrease:

To find intervals of increase and decrease, we compute the derivative f(x)f'(x): f(x)=ddx(x3x4)=3x24x3f'(x) = \frac{d}{dx}(x^3 - x^4) = 3x^2 - 4x^3 Factorizing: f(x)=x2(34x)f'(x) = x^2(3 - 4x) Setting f(x)=0f'(x) = 0: x2(34x)=0x^2(3 - 4x) = 0 Solutions: x=0orx=34x = 0 \quad \text{or} \quad x = \frac{3}{4} These critical points divide the domain into intervals: (,0)(-\infty, 0), (0,34)(0, \frac{3}{4}), and (34,)(\frac{3}{4}, \infty).

Test the sign of f(x)f'(x) in each interval:

  • For x(,0)x \in (-\infty, 0), f(x)>0f'(x) > 0 (increasing).

  • For x(0,34)x \in (0, \frac{3}{4}), f(x)>0f'(x) > 0 (increasing).

  • For x(34,)x \in (\frac{3}{4}, \infty), f(x)<0f'(x) < 0 (decreasing).

  • Answer:

    • Increasing: (,34)(-\infty, \frac{3}{4})
    • Decreasing: (34,)(\frac{3}{4}, \infty)

3. Find the maximum and minimum values:

Using the critical points x=0x = 0 and x=34x = \frac{3}{4}, calculate f(x)f(x):

  • At x=0x = 0: f(0)=03(10)=0f(0) = 0^3(1-0) = 0
  • At x=34x = \frac{3}{4}: f(34)=(34)3(134)=276414=27256f\left(\frac{3}{4}\right) = \left(\frac{3}{4}\right)^3 \left(1 - \frac{3}{4}\right) = \frac{27}{64} \cdot \frac{1}{4} = \frac{27}{256}

Since the function decreases after x=34x = \frac{3}{4}, the maximum value is 27256\frac{27}{256} at x=34x = \frac{3}{4}, and the minimum is 0 at x=0x = 0.

  • Answer:
    • Maximum: 27256\frac{27}{256} at x=34x = \frac{3}{4}
    • Minimum: 0 at x=0x = 0

4. Find the inflection points:

The second derivative helps locate inflection points: f(x)=ddx(3x24x3)=6x12x2f''(x) = \frac{d}{dx}(3x^2 - 4x^3) = 6x - 12x^2 Factorizing: f(x)=6x(12x)f''(x) = 6x(1 - 2x) Setting f(x)=0f''(x) = 0: 6x(12x)=06x(1 - 2x) = 0 Solutions: x=0orx=12x = 0 \quad \text{or} \quad x = \frac{1}{2} Test the concavity:

  • For x(,0)x \in (-\infty, 0), f(x)<0f''(x) < 0 (concave down).

  • For x(0,12)x \in (0, \frac{1}{2}), f(x)>0f''(x) > 0 (concave up).

  • For x(12,)x \in (\frac{1}{2}, \infty), f(x)<0f''(x) < 0 (concave down).

  • Answer: Inflection points at x=0x = 0 and x=12x = \frac{1}{2}.


5. Find regions of concavity:

Using the results from the second derivative:

  • Concave up: (0,12)(0, \frac{1}{2})

  • Concave down: (,0)(12,)(-\infty, 0) \cup (\frac{1}{2}, \infty)

  • Answer:

    • Concave up: (0,12)(0, \frac{1}{2})
    • Concave down: (,0)(12,)(-\infty, 0) \cup (\frac{1}{2}, \infty)

Would you like a detailed plot or further clarification?

Related Questions:

  1. How can the critical points be used to analyze the function further?
  2. What is the role of inflection points in determining the behavior of f(x)f(x)?
  3. How does the degree of the polynomial influence its general shape?
  4. Can we approximate the maximum value using numerical methods instead of exact solutions?
  5. How does increasing and decreasing behavior relate to real-world applications?

Tip:

Always verify the derivative computations when analyzing critical points or concavity, as small errors can propagate.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Polynomials
Differentiation
Critical Points
Intervals of Increase/Decrease
Concavity
Inflection Points

Formulas

First derivative: f'(x) = 3x^2 - 4x^3
Second derivative: f''(x) = 6x - 12x^2

Theorems

Critical points theorem
Concavity and inflection points

Suitable Grade Level

Grade 11-12 or early university