Math Problem Statement

answer qst 1 with details

answer qst 1 with details

Solution

Solution to Question 1:

We are tasked with proving that the sequence of functions (fn)nN(f_n)_{n \in \mathbb{N}} defined as:

fn(x)=sin(nx)enx2+1x2,x[1,1],  nN,f_n(x) = \sin(nx) \cdot e^{-n x^2} + \sqrt{1 - x^2}, \quad x \in [-1, 1], \; n \in \mathbb{N},

converges pointwise on [1,1][-1, 1] to a function f(x)f(x).


Step 1: Analyze Each Term Separately

The function fn(x)f_n(x) has two terms: fn(x)=sin(nx)enx2Term 1: Oscillatory+1x2Term 2: Constant.f_n(x) = \underbrace{\sin(nx) \cdot e^{-n x^2}}_{\text{Term 1: Oscillatory}} + \underbrace{\sqrt{1 - x^2}}_{\text{Term 2: Constant}}.

  1. Second Term (1x2\sqrt{1 - x^2}):

    • The term 1x2\sqrt{1 - x^2} does not depend on nn, so it remains constant as nn \to \infty.
    • Therefore: limn1x2=1x2,for all x[1,1].\lim_{n \to \infty} \sqrt{1 - x^2} = \sqrt{1 - x^2}, \quad \text{for all } x \in [-1, 1].
  2. First Term (sin(nx)enx2\sin(nx) \cdot e^{-n x^2}):

    • The factor enx2e^{-n x^2} dominates the behavior of this term. For x0x \neq 0, observe:
      • x2>0x^2 > 0, so as nn \to \infty, the exponential term enx20e^{-n x^2} \to 0.
      • Since sin(nx)1|\sin(nx)| \leq 1, the product sin(nx)enx20\sin(nx) \cdot e^{-n x^2} \to 0 for all x0x \neq 0.
    • For x=0x = 0, observe:
      • enx2=en02=e0=1e^{-n x^2} = e^{-n \cdot 0^2} = e^0 = 1, so the term becomes sin(0)1=0\sin(0) \cdot 1 = 0.

Thus, for all x[1,1]x \in [-1, 1], limnsin(nx)enx2=0.\lim_{n \to \infty} \sin(nx) \cdot e^{-n x^2} = 0.


Step 2: Combine the Results

Now, combining the limits of the two terms: limnfn(x)=limn[sin(nx)enx2+1x2]=0+1x2.\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \left[\sin(nx) \cdot e^{-n x^2} + \sqrt{1 - x^2}\right] = 0 + \sqrt{1 - x^2}.

Thus, the sequence of functions (fn)(f_n) converges pointwise to the function: f(x)=1x2,x[1,1].f(x) = \sqrt{1 - x^2}, \quad x \in [-1, 1].


Conclusion

The sequence (fn)nN(f_n)_{n \in \mathbb{N}} converges pointwise on [1,1][-1, 1] to f(x)=1x2f(x) = \sqrt{1 - x^2}.


Would you like a detailed explanation of Questions 2 and 3?
Here are some related questions for further exploration:

  1. How do we rigorously define pointwise convergence?
  2. Why does the oscillatory term sin(nx)\sin(nx) not affect the pointwise convergence?
  3. What happens to fn(x)f_n(x) if we extend the domain outside [1,1][-1, 1]?
  4. Can 1x2\sqrt{1 - x^2} be approximated using Taylor series expansion near x=0x = 0?
  5. How does exponential decay in enx2e^{-n x^2} affect the convergence rate?

Tip: To understand pointwise vs. uniform convergence, compare how the speed of convergence depends on both nn and xx.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Pointwise Convergence
Exponential Decay
Trigonometric Functions

Formulas

f_n(x) = sin(nx) * e^{-n x^2} + sqrt(1 - x^2)
lim_{n -> infinity} sin(nx) * e^{-n x^2} = 0
lim_{n -> infinity} sqrt(1 - x^2} = sqrt(1 - x^2}

Theorems

Pointwise Convergence Theorem

Suitable Grade Level

Undergraduate Mathematics