Math Problem Statement

What are the place values of a base 8 number with 5 digits? Convert these base 8 numbers to decimal numbers.

Solution

To solve this problem, let’s break it into two parts based on the image content.

Part 1: Place Values of a Base-8 Number with 5 Digits

In base-8 (octal), each digit represents a power of 8, starting from the rightmost digit (which is the 808^0 place). For a 5-digit base-8 number, the place values from left to right are:

  • Leftmost digit: 84=40968^4 = 4096
  • Next digit: 83=5128^3 = 512
  • Middle digit: 82=648^2 = 64
  • Next digit: 81=88^1 = 8
  • Rightmost digit: 80=18^0 = 1

So, from left to right, the place values are: 4096, 512, 64, 8, 1.

Part 2: Converting Base-8 Numbers to Decimal

To convert each base-8 number to decimal, we use the formula: Decimal=(digit×8position)\text{Decimal} = \sum (\text{digit} \times 8^{\text{position}}) where each position is counted from the right, starting at 0.

  1. 080_8: 00
  2. 181_8: 11
  3. 484_8: 44
  4. 787_8: 77
  5. 10810_8: 1×8+0=81 \times 8 + 0 = 8
  6. 11811_8: 1×8+1=91 \times 8 + 1 = 9
  7. 12812_8: 1×8+2=101 \times 8 + 2 = 10
  8. 73873_8: 7×8+3=56+3=597 \times 8 + 3 = 56 + 3 = 59
  9. 1008100_8: 1×82+0×8+0=641 \times 8^2 + 0 \times 8 + 0 = 64
  10. 1018101_8: 1×82+0×8+1=64+1=651 \times 8^2 + 0 \times 8 + 1 = 64 + 1 = 65
  11. 1108110_8: 1×82+1×8+0=64+8=721 \times 8^2 + 1 \times 8 + 0 = 64 + 8 = 72
  12. 5258525_8: 5×82+2×8+5=320+16+5=3415 \times 8^2 + 2 \times 8 + 5 = 320 + 16 + 5 = 341
  13. 100081000_8: 1×83+0×82+0×8+0=5121 \times 8^3 + 0 \times 8^2 + 0 \times 8 + 0 = 512
  14. 100781007_8: 1×83+0×82+0×8+7=512+7=5191 \times 8^3 + 0 \times 8^2 + 0 \times 8 + 7 = 512 + 7 = 519
  15. 104081040_8: 1×83+0×82+4×8+0=512+32=5441 \times 8^3 + 0 \times 8^2 + 4 \times 8 + 0 = 512 + 32 = 544
  16. 525085250_8: 5×83+2×82+5×8+0=2560+128+40=27285 \times 8^3 + 2 \times 8^2 + 5 \times 8 + 0 = 2560 + 128 + 40 = 2728

Would you like more detailed explanations or have any questions?


Here are some additional related questions:

  1. How do place values change in other bases, such as base-10 or base-16?
  2. Can you explain how to convert decimal numbers back to base-8?
  3. How would the process differ for a base-16 number with 5 digits?
  4. What are practical applications of using different bases in mathematics or computer science?
  5. How do you represent a base-8 (octal) number in binary?

Tip: To verify a base conversion, try converting your result back to the original base as a quick check!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Base Conversions
Place Values
Base 8 (Octal) Number System

Formulas

Decimal = Σ(digit × 8^position)

Theorems

-

Suitable Grade Level

Grades 5-8