Math Problem Statement
GRAFICAR FUNCION F
Sea la función f definida por: f(x) = {3x - 1; x <= -2, 5; -2 < x <= 4, -2x + 5; x > 4}. Determine el dominio de f, ¿Qué función se representa en el intervalo ] -∞, -2] ?, ¿Para los valores de x ∈ [-2, 4], la gráfica de la función es un punto? Grafique la función f.
Solution
Let's analyze the function defined in the image and address each of the related questions.
Function Definition:
\begin{cases} 3x - 1 & \text{if } x \leq -2 \\ 5 & \text{if } -2 < x \leq 4 \\ -2x + 5 & \text{if } x > 4 \end{cases}$$ ### 20. **Determine el dominio de $$f$$**: The domain of the function is the set of all $$x$$-values for which $$f(x)$$ is defined. In this case, the function has different expressions for different intervals of $$x$$, but it is defined for all real numbers. Hence, the domain is: $$D(f) = (-\infty, \infty)$$ ### 21. **¿Qué función se representa en el intervalo $$] -\infty, -2]$$?** In the interval $$x \leq -2$$, the function is defined by $$f(x) = 3x - 1$$. Therefore, the function represented in the interval $$] -\infty, -2]$$ is: $$f(x) = 3x - 1$$ ### 22. **¿Para los valores de $$x \in [-2, 4]$$, la gráfica de la función es un punto?** InAsk a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Piecewise Functions
Domain and Range
Graphing Functions
Formulas
f(x) = 3x - 1 for x <= -2
f(x) = 5 for -2 < x <= 4
f(x) = -2x + 5 for x > 4
Theorems
Properties of piecewise functions
Continuous and discontinuous functions
Suitable Grade Level
Grades 10-12
Related Recommendation
Understanding Piecewise Functions: Domain, Range, and Graph Analysis
Analyzing Piecewise Functions: Domain, Range, and Graph Sketching
Piecewise Function: Domain, Range, and Solutions for f(x)
Piecewise Function Analysis with Absolute Value and Quadratic Equation
Domain, Range, and Behavior of Piecewise Function Graph