Math Problem Statement

реши

Physics problems related to oscillations, LC circuits, and inductance, including calculating the period, maximum current, and required inductance.

Solution

Here is a step-by-step solution to the problems visible in the provided image:


Problem 3:

Task: Calculate the period TT, natural frequency f0f_0, and angular frequency ω0\omega_0 of an LC circuit where L=38mHL = 38 \, \text{mH} and C=2.5μFC = 2.5 \, \mu\text{F}.

Solution:

  1. Formula for period: T=2πLCT = 2\pi \sqrt{LC} Convert units: L=38×103H,C=2.5×106FL = 38 \times 10^{-3} \, \text{H}, \quad C = 2.5 \times 10^{-6} \, \text{F} Substitute: T=2π(38×103)(2.5×106)T = 2\pi \sqrt{(38 \times 10^{-3})(2.5 \times 10^{-6})} T=2π9.5×108T = 2\pi \sqrt{9.5 \times 10^{-8}} T2π×9.75×1046.13×103s=6.13msT \approx 2\pi \times 9.75 \times 10^{-4} \approx 6.13 \times 10^{-3} \, \text{s} = 6.13 \, \text{ms}

  2. Natural frequency f0f_0: f0=1T=16.13×103163Hzf_0 = \frac{1}{T} = \frac{1}{6.13 \times 10^{-3}} \approx 163 \, \text{Hz}

  3. Angular frequency ω0\omega_0: ω0=2πf0=2πT2π×1631024rad/s\omega_0 = 2\pi f_0 = \frac{2\pi}{T} \approx 2\pi \times 163 \approx 1024 \, \text{rad/s}


Problem 4:

Task: Calculate the maximum current in the circuit where Umax=0.22kVU_{\text{max}} = 0.22 \, \text{kV}, L=0.22HL = 0.22 \, \text{H}.

Solution:

The maximum current is given by: Imax=UmaxL/CI_{\text{max}} = \frac{U_{\text{max}}}{\sqrt{L/C}}

Convert values: Umax=0.22kV=220V,L=0.22H,C=2.5×106FU_{\text{max}} = 0.22 \, \text{kV} = 220 \, \text{V}, \quad L = 0.22 \, \text{H}, \quad C = 2.5 \times 10^{-6} \, \text{F}

Substitute: Imax=2200.22/(2.5×106)I_{\text{max}} = \frac{220}{\sqrt{0.22 / (2.5 \times 10^{-6})}} Imax=22088×103I_{\text{max}} = \frac{220}{\sqrt{88 \times 10^{3}}} Imax=2202960.743AI_{\text{max}} = \frac{220}{296} \approx 0.743 \, \text{A}


Problem 5:

Task: Calculate the effective values of current and voltage for a pendulum making 90 oscillations in 2 minutes.

Solution:

  • Frequency of oscillations: f=Number of oscillationsTime=90120=0.75Hzf = \frac{\text{Number of oscillations}}{\text{Time}} = \frac{90}{120} = 0.75 \, \text{Hz}

  • Since the RMS (effective) current and voltage depend on the characteristics of the system, further specifics would be required.


Problem 6:

Task: Determine the inductance LL needed to achieve an oscillation frequency f=3kHzf = 3 \, \text{kHz} with a capacitor C=12μFC = 12 \, \mu\text{F}.

Solution:

  1. Frequency formula: f=12πLCf = \frac{1}{2\pi \sqrt{LC}}

  2. Rearrange for LL: L=1(2πf)2CL = \frac{1}{(2\pi f)^2 C}

  3. Convert values: f=3kHz=3000Hz,C=12μF=12×106Ff = 3 \, \text{kHz} = 3000 \, \text{Hz}, \quad C = 12 \, \mu\text{F} = 12 \times 10^{-6} \, \text{F}

  4. Substitute: L=1(2π×3000)2×12×106L = \frac{1}{(2\pi \times 3000)^2 \times 12 \times 10^{-6}} L=1(6.28×3000)2×12×106L = \frac{1}{(6.28 \times 3000)^2 \times 12 \times 10^{-6}} L=1142.1×106×12×106L = \frac{1}{142.1 \times 10^6 \times 12 \times 10^{-6}} L11.705H10.587HL \approx \frac{1}{1.705 \, \text{H}^{-1}} \approx 0.587 \, \text{H}


Summary:

  • Problem 3: T6.13ms,f0163Hz,ω01024rad/sT \approx 6.13 \, \text{ms}, f_0 \approx 163 \, \text{Hz}, \omega_0 \approx 1024 \, \text{rad/s}
  • Problem 4: Imax0.743AI_{\text{max}} \approx 0.743 \, \text{A}
  • Problem 6: L0.587HL \approx 0.587 \, \text{H}

Would you like more detailed steps for any part or further assistance?


Follow-up Questions:

  1. How does the inductance value affect the frequency of the LC circuit?
  2. What happens if the capacitor in Problem 3 is increased?
  3. How can we interpret the RMS values of current and voltage in Problem 5?
  4. Why does ImaxI_{\text{max}} in Problem 4 depend on L/C\sqrt{L/C}?
  5. How would decreasing ff in Problem 6 affect LL?

Tip: When solving LC circuit problems, always ensure the units are consistent before applying formulas.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Oscillatory motion
LC circuit resonance
Inductive reactance
Time period and frequency calculations

Formulas

T = 2π√(LC) (period of an LC circuit)
f = 1/T (frequency)
I_max = U_max / √(L/C) (maximum current)
L = 1 / [(2πf)^2C] (inductance for a desired frequency)

Theorems

Resonance in LC circuits
Energy conservation in oscillatory systems

Suitable Grade Level

Grades 10-12 (High School Physics)