Math Problem Statement

1. Soit E un ensemble à 9 éléments. Combien y a-t-il de 4-uplets d’éléments distincts de E ? 2. Sven doit créer un code de sécurité composé de 6 chiffres sur son smartphone. Il décide de ne jamais utiliser deux fois le même chiffre et de ne jamais utiliser le chiffre 0. a. Combien de codes peut-il alors créer ? b. Jérémy a vu son ami taper 5 comme dernier chiffre. Combien de codes différents sont alors possibles s’il veut utiliser son code ?

Solution

Let's analyze and solve the questions:


1. Combien y a-t-il de 4-uplets d’éléments distincts de EE?

An ensemble EE has 9 elements, and we need to form 4-uplets of distinct elements.

This involves permutations without repetition, as the order of the elements in the 4-uplet matters. The formula for permutations is:

P(n,k)=n!(nk)!P(n, k) = \frac{n!}{(n-k)!}

Here:

  • n=9n = 9 (the total number of elements),
  • k=4k = 4 (the number of elements to select).

Substituting:

P(9,4)=9!(94)!=9!5!=9×8×7×6=3024P(9, 4) = \frac{9!}{(9-4)!} = \frac{9!}{5!} = 9 \times 8 \times 7 \times 6 = 3024

So, there are 3024 distinct 4-uplets.


2a. Combien de codes peut-il alors créer ?

Sven needs to create a 6-digit code with the following restrictions:

  • He cannot use the same digit twice.
  • The digit 0 cannot be used.

This leaves him with 9 available digits (1,2,,91, 2, \dots, 9).

The number of possible permutations is again calculated using:

P(n,k)=n!(nk)!P(n, k) = \frac{n!}{(n-k)!}

Here:

  • n=9n = 9,
  • k=6k = 6.

Substituting:

P(9,6)=9!(96)!=9!3!=9×8×7×6×5×4=60480P(9, 6) = \frac{9!}{(9-6)!} = \frac{9!}{3!} = 9 \times 8 \times 7 \times 6 \times 5 \times 4 = 60480

Thus, Sven can create 60,480 codes.


2b. Combien de codes différents sont possibles si Jérémy a vu son ami taper 5 comme dernier chiffre ?

If the last digit of the code is fixed as 55, Sven now only has to arrange the remaining 55 digits from the set {1,2,3,4,6,7,8,9}\{1, 2, 3, 4, 6, 7, 8, 9\} (excluding 55).

The number of permutations for 55 digits out of 88 is:

P(8,5)=8!(85)!=8!3!=8×7×6×5×4=6720P(8, 5) = \frac{8!}{(8-5)!} = \frac{8!}{3!} = 8 \times 7 \times 6 \times 5 \times 4 = 6720

So, there are 6720 possible codes where 55 is the last digit.


Final Answers:

  1. 3024 4-uplets of elements distinct from EE.
  2. a. 60,480 codes Sven can create. b. 6720 codes if 55 is the last digit.

Would you like a detailed explanation for any of the steps or further related examples? Here are 5 related questions:

  1. What is the formula for combinations (C(n,k)C(n, k)) and how does it differ from permutations?
  2. How would the result change if repetition of digits were allowed in question 2?
  3. Can you explain factorials and their importance in counting problems?
  4. How can we use permutations to solve real-life problems like scheduling or seating arrangements?
  5. What if EE had 10 elements instead of 9? How would the results for 4-uplets change?

Tip: When solving counting problems, always clarify whether order matters (permutations) or does not matter (combinations).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Permutations without repetition
Factorials
Counting problems in combinatorics

Formulas

P(n, k) = n! / (n-k)!
Factorial formula: n! = n × (n-1) × ... × 1

Theorems

-

Suitable Grade Level

Grades 10-12